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Nonlinear wave-number selection in gradient-flow systems
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The selection of a final periodic sta@ave patterj out of a family of such states, is shown to be governed
generically by defects for the lowest order gradient-flow model, the generalized Kuramoto-Sivashinsky equa-
tion. Such defects arise when the nonlinear dispersion relationship of the periodic states couples with the
flow-inducing Galilean zero mode, in a manner unique to gradient dynamics, to trigger a modulation instability
and a self-similar, finite-time evolution toward jumps in the local wave-number gradient and mean thickness.
This coupled modulation instability is much stronger than the classical phase modulation instability. The jumps
at these defects then serve as wave sinks whose strength relaxes in time. Due to such consumption of wave
peaks(nodes at the relaxing defects, the bulk wave number away from the defects decreases in time until a
unique stable periodic state is reached whose speed is equal to its differential flow rate with respect to change
in thickness. We estimate the defect formation dynamics and the final relaxation toward equilibrium analyti-
cally, and compare them favorably to numerical resif4.063-651X97)10003-4

PACS numbe(s): 47.54:+r, 47.20.Lz, 47.35ti, 47.20—k

I. INTRODUCTION tion problem[11,12, since there are many possible wave-
number shocks. Insofar as the defects interact and move and
The translationally invariant, uniform rest state of an ex-serve as sinks and sources of wave-number shocks, their
tended system is typically unstable to one-dimensional disaucleation, interaction, and annihilation then become key
turbances within a band of wave numbers. These Fouriesteps in the selection of the final periodic state. Nevertheless,
modes can grow and saturate to form a family of one-t has not been established whether a preferred state is always
dimensional periodic statémolls or wave$. However, only a  selected, and there seems to be a multitude of selection pro-
subset of this family of saturated states are stable, and theesses. Statistically stationary, defect-mediated spatiotempo-
final state approached by any initial condition is presumed teal chaos can also occur if defects are generated and annihi-
lie within this stable band. Considerable effort has hencdated continuously, and a uniform periodic state is never
been expended to determine the stable band, and has led reached 13].
classical secondary stability criteria for periodic states like The aforementioned theories for extended-domain dy-
the Eckhaus bound for nondispersive systems, the Langewamics are typically described by complex Ginzburg-Landau
Newell and Benjamin-Feir criteria for dispersive systems,(CGL) type amplitude equations appropriate for near-critical
the Busse balloon, and other two-dimensional stabilitysystems with a narrow band of unstable wave numbers and
bounds[1-5] for rolls. periodic states, as typified by the well-studied Rayleigh-
Although a band of periodic states stable to all distur-Benard instability. It is known for such systems that the
bances can sometimes be found, which member of this sulmucleation of defects is greatly dependent on the Goldstone
set is eventually selected and the dynamics of the selectiomode (drift flow in Rayleigh-Beard instability whose dy-
process remain unknown, and are active areas of researaflamics must be coupled to the CGL. At a finite Prandtl num-
Suggested approaches include mean-field theories frofoer, a periodic state can induce a drift flow within the fluid
phase transitiofi6,7] which often predict that noise selects a which can, in turn, compress the local wave number into the
unique periodic state with the lowest energy. However, thainstable region such that the “stress” can only be relieved
presence of a continuum of stable and unstable periodiby the formation of a defect. This nucleation process is often
states, without an obvious functional for minimization, ren-modeled by two coupled equations for the phase of the com-
ders such statistical theories difficult and uninformative inplex amplitude in the CGliwhose gradient is the wave num-
the most general case. Recently, it has been established th#n and the Goldstone zero mofi4,15. However, such an
the large-time dynamics of near-critical extended systems ianalysis usually does not extend beyond numerical simula-
dominated by local domain@atcheg of monochromatic pe- tion. Recently, Charru and Barthe[di6] have also observed
riodic states separated by defe@t®main walls or disloca- defects with jumps in the local film thickness in sheared
tions) [8,9]. Such defects can move as one periodic statewo-phase flow. These defects then become either wave
expands at the expense of another. Wave-number selecti@inks or wave sources that are the main driving forces behind
can also proceed as wave-number shocks appear in the bulke wave dynamics. The thickness jumps also underscore the
area, and propagate toward or away from the defgll#d  importance of the zero mode in defect dynamics. Exactly
The wave number selected is then related to the front seledvow the zero mode couples with the modulation phase insta-
bility to produce defects has yet to be elucidated. One ap-
proach is to assume that the zero-mode dynamics is slaved to
*Permanent address: Dept. of Applied Mathematics, Kuban Statthe phase dynamics, and its effect on the latter can be pro-
Technological University, Krasnodar 350072, Russia. jected by center manifold theory, for example, into higher-
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order terms in the phase equatidv—19. Defect formation  with a single parametef for the dispersion term. A moving-

is again demonstrated numerically, but a generic pattern sérame transformation is used to eliminate amyterm. Ex-

lection process is still not revealed. It is also questionablgansion about nonzero uniform states will only contribute to

that the zero mode is a slave mode in light of Charru andhis removable term, and hence one can expand about the

Barthelet's observation of “hydraulic” jumps at the defects. zero state without loss of generality. This is hence the most
To complicate matters, there is an important class ofjeneral weakly nonlinear equation for gradient-flow systems,

extended-domain systems whose unstable band is not naand it has been the subject of many studidé—39. For

row, and the final periodic states can often contain manyondispersive systems witk— —x symmetry, & vanishes

Fourier modes. They are hence beyond the CGL descriptiorexactly, and one obtains the Kuramoto-Sivashungk§)

In the limit of large wavelength, the periodic states resemblequation. The unique invariance of E¢§) and(2) to a shift

an array of localized structurgsolitary waves or puls¢s in the mean film thickness is due to the gradient form, and

which contain a large band of Fourier modes. The largehis Galilean symmetry is most important in its dynamics. It

bandedness of this class of systems is due to mass conserygermits a local thickness variation from zero via a slow

tion, and its dynamics is described by scalar evolution equamodulation instability.

tions of the gradient conservation form A simple normal mode analysis reveals that the band of

unstable wave numbers for the zero uniform state lies within

the bandae(0,1) with a neutral wave numbeg,=1 and a

@: 9 q(h, b, M P - (1) maximum-growing mode oty,,,=1#2. The normal mode
at IX analysis also reveals that the phase speeds of these band of
unstable modes are
They include thin-film lubrication equations for falling films, (k)= — &k (33)

evaporating film with Marangoni effects, reaction fronts,
sheared films and core-annular flows, d0-27; Cahn-  sych that the phase speed of the neutral mode is
Hilliard equations for phase transition if concentration is
used as an order paramef@s]; liquid jets in air[29]; and Ch=C(1)=—24. (3b)
others. Because of the gradient operator, the homogeneous
state is neutrally stable and, because a long-wave stabiliz&? an earlier bifurcation analysf85], we showed that a fam-
tion mechanism does not exist, the unstable band can exteril of finite-amplitude periodic states with zero average
to zero wave number. The same formulation can also béhickness bifurcate supercritically from, with speecc,, and
applied to vector gradient-flow evolution equations, but wezero amplitude into lower wave numbers. This solution
shall restrict ourselves to the scalar case here. For convéranch was traced numerically, and an entire fanyilyvith
nience, we shall adopt the thin-film nomenclature and refewavelengths ranging from72to infinity was uncovered. In
to h as the film height andj the flow rate. Each derivative contrast, the narrow band of periodic states for the CGL
corresponds to a higher order in the long-wave Benny-typ@quaﬂOﬂ does not extend to states with infinitely long wave-
lubrication expansion, and we have truncated the expansidgngths. In fact, the large Fourier content of the localized
at the fourth derivative. structures in the infinite wavelength limit is beyond the
Although the gradient flow described by E() is one  weakly nonlinear, nearly sinusoidal description of CGL-type
dimensional, its region of validity is considerable for mostamplitude equation. In Fig. 1, we subject a high-wave-
open-flow extended systems it describes. Such hydrodyaumber membefa,=0.9) of this family for 5=1.0 to a spa-
namic systems often obey some form of Squire’s theoremtially periodic disturbance whose wavelength is much longer
such that transverse variations are filtered away from smaltthan that of the periodic state. The disturbance wave number
amplitude noise with a large two-dimensional Fourier con-is vag, with »=0.05. Consequently, the modulation envelope
tent. As a result, at a large distance downstream, the wavencompasses about 20 wave peaks. As is evident, the ampli-
patterns are essentially one dimensional with variations iriude of the periodic wave and envelope approach zero in
the streamwise direction only. We first note that, unlike thefinite time at several defect locations where the local wave
CGL equation, any global uniform stata=cons} is a so- numbera also increases. This compression of waves seems
lution to the translationally invariant equatidfi) with no  to accelerate the defect formation process. The mean thick-
x-dependent coefficient. However, mass conservatiomessy jumps discontinuously at the defect, and this jump is
through the boundary condition stipulates a particular globafurther amplified by the compression effect. At a later stage
uniform state which is chosen through scaling and reductio®f the dynamics, however, wave compression is so severe at
to be the zero state here. Expanding about the zero uniforifie defects that it actually precipitates peak coalescence such
state and retaining leading-order termshifamplitude ex- that the net number of wavésodes or peakglecreases. The
pansion and ind/dx (long-wave expansionone obtains af- local wave number at the defects also drops precipitously
ter proper scaling to remove the maximum number of paramwhen waves begin to disappear there. This decrease in the
eters the following generic evolution equation, thewave number at the defect immediately triggers a relaxation
generalized Kuramoto-Sivashunsk§KS) equation or the process for the jump in the mean thickness, until it becomes
Kawahara equation almost uniform throughout the domain. During the relax-
ation, however, the jump defect continues to annihilate
waves by coalescence, such that the average wave number
over the entire domain decreases monotonically. This dila-
tion process driven by the defect wave sink stops wherythe

oh aq oh 9 5
St o= ot T ax (2Pt Shyath) =0, (2)
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FIG. 1. A zero-mean-thickness periodic state of thefamily of the GKS equation ab=1, with «=0.9, is subjected to a long-wave
periodic disturbance with wave numbes, where »=0.05. The unstable state evolves toward a stable periodic state with a lower wave

number.
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leading order to produce defed¢tnd modulation instability
and are hence much more dominant than a purely phase in-
stability. Moreover, our current theory does not involve an
amplitude expansion, and is hence valid for all members of
the periodic-wave family up to the solitary pulses. However,
due to this extension, unlike the CGL formulation, the speed
and “flow rate” of the entire family of periodic states must
be estimatedh priori. The coupled equations then describe
how the domain is covered by this family of periodic states,
and how the family members interact dynamicallgnd
slowly) as governed by node and mass conservation. Most
interestingly, we show that a unique final state satisfying a
resonance condition is always selected by this mechanism.
A defect forms when a sharp boundary appears between
two patches of locally periodic states, and, since the defect
escapes our description of slow modulation evolution along
the periodic family, its formation corresponds to a blow-up
FIG. 2. The peaks of the waves in the simulation of Fig. 1 areSolution to our coupled equations. This is shown to occur in
traced as world lines. The creation and relaxation of wave-sinioUr léading-order expansion iflgx whenever the coupled
defects are evident. equations, linearized about a particular periodic state, be-
come elliptic with complex eigenvalues. The change of type
jump of the latter relaxes to zero. An equilibrium wave num-from hyperbolic to elliptic then offers a very simple criterion
ber a, is then reached at that point which is much lower thanfor the stability of the states to long modulation disturbances
that of the initial periOdiC state. The amplitude of the final (Sideband |nstab|||tythat is ana|ogous to the Eckhaus and
selected state is larger, and its shape begins to take on th@nge-Newell criteria for the GL and CGL equations. Like
localized pulse configuration with a broader Fourier contentthe |atter, near-neutral states are found to be modulationally
The peaks of the individual waves are traced in the worldnstaple.
lines of Fig. 2. The formation of a wave sink defect in finite  ynlike the CGL defects, these defects exhibit jumps in the
time is evident. We note that the defect moves during thgnean thicknesg and the wave-number gradient in the finite-
relaxation Stage. However, while the initial periOdiC StatEtime Singu|arity formation phenomenon shown in F|gs 2 and
travels with a negative speed, the defect relaxes to zerg, which we can estimate analytically with a complexifica-
speed, which is also the speed of the final state. tion technique. The hydraulic pump in mean thickngss
It is clear from the above simulation that the wave- drives this defect with a speed that is faster than the periodic
number selection process of the GKS equation is driven byyaves on the lower thickness in front of it, and slower than
defects in a manner very different from near-critical systemghose on the higher thickness behind it. As a result, these
described by the CGL equation. Exploiting the translationaljefects act as node sinks, and are very different from the
and Galilean symmetries of the equation, we shall derive tW@GL defects. The wave number on either side of the defect
Coupled first-order nonlinear partial differential equations thence decreases as wave nodes are consumed, until they be-
the gradient or conservation form for the slowly varying come stable to modulation stability. The blow-up behavior
wave numbere and mean thicknesg. These equations de- for unstable states then works in reverse to relax the jumps
scribe the conservation laws for wave nodeeak$ and  yntil y is spatially uniform. We are also able to describe this
mass. They replace the coupled phase-amplitude equatioRslaxation stage theoretically, and offer an accurate estimate
from the CGL formulation with the mean thickness as anof the final equilibrium wave number when the node annihi-
explicit representation of the Goldstone mode. lation process terminates. This then fully elucidates the ge-
In particular, the classical sideband modulation stabilityneric periodic state selection mechanism for gradient-flow
of periodic waves involves a long-wave perturbation of thesystems. The local dynamics is driven by the modulation
zero eigenvalue corresponding to the translational invariancgstability and evolves along the periodic family from an
at the short scale. The reSUlting phase diffusion equation, Qiinstable h|gh wave-number region with Sma”-amp”tude

the higher-order KS equation, describes how the modulatioginuous waves to a unique pulselike stable state with larger
introduces a phase shift relative to the original periodicwayelength and amplitude.

wave. This approach presumes that the phase dynamics as-

sociated with long-wave perturbation of the translational

zero eigenvalue is dominant. This phase-dominant theory Il. PERIODIC EAMILY. SYMMETRY

can only produce defects if higher-order terms in the long- AND SLOW DY'NAMICS ’

wave modulation expansion and amplitude expansion, from,

for example, the projection of the Goldstone zero mode, are Consider a saturated finite-amplitude, periodic wéve
included[18,19. In contrast, we show here that the Galileansolution to Eq.(2) which propagates at a constant sp&zd
invariance of a gradient-flow system introduces an additionaaind we chooséd such that its meaaverage thickness is
zero eigenvalue at short scale, and a second dominant modero. Note the distinction between the sp€edf the finite-

for the modulation sideband instability. The translational andamplitude wave and the phase speeaf Eq. (3a) for waves

Galilean dominant modes will be shown to be coupled toof infinitesimally small amplitude. TheH is described by
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FIG. 3. They, zero-mean-thickness periodic solutions of the GKS equatidi@t3 and 5.0. The horizontal scale has been stretched by
27l ag, such that all periodic states have the same scaled wavelength.

H”+ 8H"+H'—CH+2H?2=Q, (4a)
H(x)=H(x+ 27/ ), (4b)
(H)y=0, (40)
(Q)=2(H?), (4d)

where Eq(43) is in the moving frame with speed, 27/« is

the spatial periodQ is the flow rate in the moving frame and
() denotes integration over one spatial period. A unique fea-
ture of these finite-amplitude, zero-mean periodic states is
that they have different flow rat€3, and hence can trigger a
corresponding change in the film thickness if a distribution
of periodic states is present. This is the key mechanism in the
modulation instability. The periodic solutions to Ed,) for
small § has been estimated by Chaff#], and for larges

by Chang, Demekhin, and Kopelevi¢B5], Renardy[33],
Christov and Velardd38], and Bar and Nepomnyashchy
[39]. Detailed numerical construction has also been carried
out by Chang, Demekhin, and KopelevifB5]. An infinite
numbers of solution branches exist at the KS limit&$0

due to a Shilnikov bifurcation of the associated homoclinic
orbit. However, foré>1.1, only a single branch, with «
ranging from 1 to zero remains as shown in Figs. 3 and 4.
This branch bifurcates from the neutral wave numéer1,

and represents saturated periodic states from the unstable
band of wave numbers. As seen in Fig. 3, the small-
solitary-wave limit of this branch corresponds to localized
one-hump pulses.

Near the bifurcation poind=1, a simple Hopf bifurcation
analysis of the dynamical system corresponding to @4.
yields, for all § [35], the speed and flow rate of zero-mean
thickness periodic states,
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C(a)~26—3asb, (53 thickness and wave-number gradient, and that such jumps
shift the system from an unstable periodic state to a stable
one, as seen in Figs. 1 and 2.
1 The above family of zero-mean periodic famiy(X; «) is
(Q)(a)~ (1= a?)[(4a?5+C)°+(8a®—2a)?]. a one-parameter family parametrized by the wave number
(5b) speedC, or mean flow rat€ Q). However, any member of
this family remains a solution upon a translationxin

. . . X—X+ 0,
We note that these expressions are only validdferl since

finite-amplitude waves withw>1 do not exist. For&>1,  and a Galilean transformation involving a shift in the mean

cumbersome elliptic integrals33,35,39 can also be ob- thickness and corresponding corrections to speed and flow
tained forC and(Q) within the entire range oke [0,1]. For  rate,

simplicity, we shall use E(5), and limit ourselves to small-

amplitude periodic states with only a few Fourier modes. H—H+y, (6a)
However, the formulation remains valid for the periodic

pulses at vanishinge provided that one contends with the C—C+4y, (6b)
more complex expressions. The variation of the mean flow

rate with respect tav in Eq. (5b) immediately suggests that a (Q)—(Q)—2x*>—Cy. (60

wave-number gradient can induce flow, and change the local ] ) ) )
mean thickness from zero due to mass conservation. Thaince(Q) is the flow rate in the moving frame of a viscous
change in the local mean thickness, in turn, will be shown tdalling film with the wall moving in the—x direction with
changeC, and hence introduce a possible positive feedbackPeedC, the flow rate becomes more negative with increas-
mechanism. ing speedC. The increase in wave speed, on the other hand,
It is clear from Eq(5) that the larger pulselike, low-wave- 1S due to the thicker film. For falling films, this is because of
number members of the zero-mean family travel faster and1€ decreased wall drag of thick films which amplifies dis-
pack more flow than the smaller harmonic waves with waveP€rsion. These physical factors account for the Galilean sym-
numbers near unity. As a result, we expect that a monotoniM€try. We also note that this invariance is only valid up to
cally increasing wave-number distribution with lower wave 0rderH” in Eq. (4a). If there exist higher-order terms I,
numbers behind higher ones will steepen in its gradient dug0 transformation irC and(Q) can cancel this shift it
to the speed differential. However, this nonlinear dispersiorfven for a gradient-flow system. Hence, the invariance is
(group velocity effect is also accompanied by a bulge in thelocal in H a}nd is exactly correct only for the leading-order
mean thickness due to the concomitant flow gradient. Th&KS equation. o _
question is then whether this local increase in film thickness The above two symmetries imply that there is a three-
will accelerate(deceleratgthe increase in the wave-number Parameter periodic family with nonzero mean thickness. This
gradient, and destabilizestabilize the formation of a uni- family is parametrized by, 6, andy. Instead ofw, one can
form periodic state. This then involves a study of how a@lSo use eithe(Q) or C or a combination of these param-
change of the mean thickness from zero will alter the non€ters. We shall assume that the entire domain is covered by
linear dispersion relationship i@i(e) and the mean flow rate  Mmembers of this three-parameter family, and that the dynam-
(Q)(a). This feedback effect due to the excitation of the zerolCS is driven by slow interaction among its membjgts]. As
mode can even destabilize in the limit of zero amplitude. At2 result, the transformation parametess,f, and y become
this leading order, any wave-number disturbance will notslowly varying yanables in time and space. Due to variation
steepen but simply translate without growth if the meanOf the mean thickness paramejerthe local average thick-
thickness remains zero. However, the phase lag between tR€ss of the film also varies in the domain. This feature and
excited mean thickness and the initial wave-number perturthe Galilean symmetry in E@6) are unique to gradient-flow
bation can produce the necessary delay to amplify the gradgvolution and is not found in, say, the CGL dynamics. They
ent of the wave-number disturbance by inducing wave comare direct results of mass conservation. .
pression and dilation through speed gradients. This is the The appropriate slow time scale and long length scale will
origin of the modulation instability of a uniform periodic € shown to be
state. At its onset, the disturbances propagate toward each _ .
other as the system changes from hyperbolic to elliptic. This T=VL o ES X, @)

growth is then accelerated by the nonlinear mechanism, Qa6 the stretching is carried out with the modulation wave-
form defects with jumps in the wave-number gradient anth mper,, of the instability. We hence seek solution to Eq.

the mean thickness. : :
2) in the stationary frame of the form suggested by symme-
Frisch, She, and ThudKOQ] reported that the periodic 'Er;? 6) y gd y sy

states of the KS equation can suffer the above modulation

instability due to a coupling between mean flow and nonlin- h=H(x,t)+ x(&,7),
ear dispersion. “Viscoelastic” behavior corresponding to os- )
cillations caused by the delay between mean thickness and a={(Q)(&,7)—2x%(&,7),

wave-number gradients in the elliptic region was seen in
their numerical simulation. We shall show here that thewherey=(h) is the mean thickness Galilean zero mode and
modulation can evolve further to form the jumps in meanthe omission of theC, term in Eq.(6¢) is because is the
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flow rate in the stationary frame whil@ is its counterpart in  since{Q)'(«p) is negative from Eq(5h). Because the ex-
the moving frame. The two flow rates are off by a differencecited mean thickness can, in turn, induce a growth in the
of C(H+x), but the first term has a zero mean and thewave-number disturbance, this delay is crucial to the insta-
second cancels th€, term in Eq.(6¢) to yield Eq. (8). bility of the periodic state.

Hence the usual two-scale expansion immediately yields, af- Deciphering this feedback mechanism and the general
ter integration in the short scale due to the solvability condi-evolution of the wavenumbes along the solution branch

tion, a long-range mass conservation law requires a long-range dispersion relationship involving the
speedC of the periodic states. This slow evolution is due to
dx aq d ) the translational symmetry. The phase representing the shift
PP T T (Q)—2x7). (9 in the translational invariance is now a slow variabié,1).

However, since the local solution is required to be a member

The first term within the gradient accounts for flow due to©f thg perlodlc.famlly, Wwe can expressn terms of a slowly
wave-number variation along the zero-mean family, while?@ying « and its frequency, which is related tar through

the second term corrects the flow rate for periodic states witlﬁhe speed relationshifba),

non-zero-mean thickness. Both contribute to the increase in _ _ _
the mean thickneséh) =x. The mean flow( Q) is related to h(ax—wt+ 6(¢,7))=h(a(é,7)x— (¢ n)1),  (10)
the slow varying wave numbe(,7) through Eq.(Sb). and we seek variation dfi in the form on the right. Let

A note of caution about scaling is appropriate here. Th%(x,t;g,r):a(g,r)x—w(g, Mt then
GKS equation is usually derived from both a long-wave ex-
pansion and an amplitude expansion. In fact, truncation at a d d
particular order leading to the GKS equation assumes a spe- Y
cific relative order between amplitude anrdox. In this

modulation analysis, however, we have only expanded in thgne ysual two-scale expansion of Efjl), using the scalings

long-wave expansior/d¢ without a specific amplitude ex- of Eq. (7), then yield the desired dispersion relationship after
pansion. A relative order is not imposed. As a result, theyrgss differentiation,

defect singularities can be smoothed out by higher-order

terms ind/d¢ which should be included when large amplitude da dw

and gradient develop at the defects. Nevertheless, singularity FrR TE =0. (12)
formation in finite time does appear at the leading order in

dl9¢, and it offers a dramatic and accurate estimate of the fuliryis equation describes the conservation law for wave nodes
dynamics except for the local defect-smoothing coalescencgeaks. In fact, Eqs(11) and(12) specify the time and space
events. Fortunately, the coalescence rate is specified by thgretching of Eq(7). Since this dispersion relationship de-
rate-limiting transfer of waves to the defect, and this transfegcripes finite-amplitude periodic states, the frequency is re-
mechanism is accurately described by the leading-old&r |ated to the speed of zero-mean waves in Esp), after

expansion. In any case, since the Galilean invariance is logroper correction by Eq(6) to account for finite mean thick-
beyond second order in amplitude, the large-amplitudepegs,

strongly nonlinear dynamics cannot be resolved with a slow
modulation theory that expands about the Galilean zero w=ca=[C(a)+4x]a=Q(a)+4ay, (13
mode.

Returning to our illustrative example of a monotonically whereC(«) is the speed of the zero-mean family in Eda),
increasing spatial wave-number distribution of the zero{)(«) its wave frequency, and(a,y) is the speed of a peri-
mean periodic family, the zero-mean nonlinear dispersiorodic state with wavenumber and mean thicknesg. The
relationship in Eq.(5a8) stipulates that the gradient will correction toQ) due to a change in the mean thickngsis
steepen, but that there will be an accompanying increase ithen 4xy. This completes the derivation of the coupled slow-
the mean thicknesg in the region of the high-wave-number evolution equation$9) and(12) for x and «, respectively.
gradient. This was deduced from th&d£)(Q) term in Eq. Since they correction for the wave frequency is positive
(9). However, the 2 term in the gradient is a nonlinear  and larger at higher wave number which is generally true for
correction, and it shows that the bulgejiwill now steepen liquid films because thick films enhance dispersion by reduc-
in front. Whether this will serve as a positive or negativeing wall drag on wave motion, it relaxes the steepening of
feedback to thex-steepening effect must be deciphered fromthe monotonically increasing wave-number distribution dis-
the nonzergy correction to the dispersion relationship. cussed earlier. Hence thgcorrection in the mean flow is

One can derive more insight by linearizing E@) about a  destabilizing, while the correction for the speed is stabiliz-
zero-mean periodic state of wave numlagrand examining ing. Which process wins will then be a nonlinear competition
slow varying periodic disturbances to the wave number. Fobetween the two effects. Nevertheless, we expect that, if the
simplicity, we introduce ngy disturbance initially and the steepening continues, the mean thickngssill be steeper
spatially periodic wave-number disturbance is stationary(more singular than the wave numbetz.

The linearizedy evolution equatiori9) receives no contribu- Linearizing Eq.(12) about a zero-mean periodic state
tion form the 272 correction term. Instead, the flow gradient with wave numbery,, one notes that, without theng cor-
(Q)' (ag)=(d({Q)/da)(ay) induced by the initial wave- rection term, anyx disturbance would simply translate at a
number distribution produces a periogjcexcitation with a  speed of—Q'(«ap) without growth. However, coupling with
7w/2 phase lag relative to the wave-number perturbationthe mean-thickness zero mode contributes-4ay(dx/d€)

a. (11
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term to the growth of the wave-number disturbance. Henceslow-evolution equationg9) and (12). It is instructive to

the #/2 phase lag between a stationary, periadiperturba- compare them to some classical modulation theories. The
tion and they excitation it induces can now produce a posi- long-range, nonlinear dispersion relationstij2) appears in
tive feedback to amplify the wave-number disturbance. Morenany classical phase diffusion theories, but the nonlinear
precisely, thex conservation equatio(l?) stipulates thatr  frequency() is often only expressed implicitly, and there is
will increase(decreasewith a negative(positive speed or also no explicitly derived correction due to the mean-
frequency gradient due to wave compresdiditation). The  thickness (zero modg¢ adjustment[10,15,17,18,4R The
maximum of the inducegf wave has ar/2 phase lag behind zero-mode evolution equatiof®), however, is unique to
the maximum of the original stationary wave-number distur-gradient-flow dynamics due to mass conservation. This was
bance such that thg gradient is negative at the wave- first realized by Frisch, She, and Thdd0], who derived a
number maximum. Thedhy term, originating from the Gal- similar set of equations for the KS equation, whose coeffi-
ilean symmetry(6b) as seen in Eq13), then stipulates that cients are determined numerically, from more lengthy multi-
waves of the same wave number are faster with a highescale expansion techniques. However, their coupled equa-
mean thickness. As a result, the maximum of the wavetions are linear, and hence they offer no further information
number disturbance now experiences a negative speed gratheyond the onset of modulation instability. The coefficients
ent, and grows as the waves are compressed. Converselyph Frisch, She, and Thual's coupled equations are derived
minimum will decrease its wave number through wavefrom a weakly nonlinear amplitude expansion of the same
dilation—the amplitude of the wave-number disturbance willorder v as the time scale and long-wave length scale in Eq.
grow. However, we have based our argument on the assump#). We have confirmed the validity of our slow evolution
tion that the initial wave-number disturbance remains staequation at this resolution by inserting the slow-amplitude
tionary. Actually, it has also translated with a speed ofexpansiong5) into our linearized equations and obtained the
—'(ag). As a result, whether the positive feedback throughsame coefficients as Frisch, She, and Thual, albeit that our
mean-thickness excitation remains destabilizing is detereoefficients are explicit while theirs must be evaluated nu-
mined by a competition between stabilizing dispersionmerically. It should be emphasized, however, that the current
(speed differential between the nonlinear periodic siatesderivation does not involve any amplitude expansion, and
represented by the nonlinear “group velocit§)’ («p), and a  hence both the linearized version and fully nonlinear version
destabilizing zero-mode excitation, represented by the negdrave higher resolution than the one resulting from an ampli-
tive flow gradient(Q)’(ag). The two competing effects are tude expansion. The accuracy of our equation with respect to
coupled through the & term from Galilean symmetry, the amplitude is only limited by the accuracy @)(a) and
which describes how a thicker film accelerates the waves)(a) for « far from a,. These quantities can be estimated
The physics of the linear modulation instability can be madenumerically if high resolution is required. On the other hand,

more clearly by noting that, in the linear limit, energy conservation and the corresponding symmetry apply
A . in some integrable systems, and supply another evolution
da ) da ax equation missing from our dissipative system. For example,
E:_Q (o) a_§_4“0 9’ in Whitham’s classical modulation theory for deep water
waves, there is an equation for slowly varying wave ampli-
oo tude (energy that replaces Eq9) [43].

&—X= —(Q) (ap) Modulation instability occurs for a monochromatic peri-
T odic state when mass conservation and nonlinear dispersion
conspire to destabilize any wave-number gradient. Lineariz-
ing the coupled slow-evolution equatiof® and(12) about

a particular zero-mean solution with wave numlagtr one

&’

where the linearization is aboutr,y)=(ag,0). Combining
the two equations yields

by O () e dao(Q) (o) e =0, obtains
which can obviously yield a growing periodic disturbance in i @ LA i (g) —0, (14)
a. The interaction between the nonlinear dispersion term art \ X IE\ X

(group velocity Q' and nonlinear flow gradiedQ)’ unique

to the present system is also clear. A more explicit derivatioryvhere

of the modulation stability criterion will be offered subse- )

quently. However, it is first noted that {fQ)’ is zero, & A:(Q (ao) 4%)

never grows. This represents the classical modulation insta- (Q)'(ag) O

bility with only the phase contribution, and underscores the

dominance of current instability when mass flow is permit-The stability of the periodic state with wave numhey to
ted. The former is only unstable when the higher-order eflong modulations(sideband disturbancegan then be ob-
fects indloé are included while the latter is already unstabletained by substituting the Floguet normal mode

at the leading order.

We have replaced the slowly varying phagbéy the fre-
guencyw, which is related tax through the nonlinear dis-
persion relationshigl3). This leavesa and y as the only
independent slow variables, and they are described by theherev is the disturbance wave number, ands the eigen-
two coupled first-order partial differential equations in thevalue of the matrix A and is independent of,

(44

Nueigf)\t:uev(ixf)\t)’ (15)
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A=iQ'(a)/2=i\D/2, (169 1 ———————————
D(a0;8)=[Q' (ap)]?+16a0(Q) (ag).  (16b) “l Unstabe
0.8+ <

It is then clear that the periodic state is stablestablg¢ to >

long modulations if Eq(14) is hyperbolic(D >0) or elliptic
(D<0) respectively. This conditio16) represents the ana- 06
log of the Echkaus, Benjamin-Feir, and Lange-Newell side- 3

band stability criteria for CGL or nonlinear Scliiager 0.5f Stable
equations to the present gradient-flow systems. Unlike the
purely phase instability of the former systems, the current

instability involves both phasévave numberand Galilean 0l

(mean thicknegszero modes. The key physical mechanism,

at least at small amplitude, is the delayed excitation of the o2} Unstable

mean thickness unique to gradient flows. Thexdl&rm in ' . , . ) . ) .

Eq. (16b arises from the Galilean symmet($b) and its g T 2 3 4 5 6 7 8 9

positive sign reflects the fact that waves with higher mean
thickness travel faster. This is generally the case for thin . . )
falling and sheared filmg44,45 as the wall dissipation be-  FIG- 5. Comparison ofx in dotted line from Eq.(16) to a
comes less retarding to wave motion. As such, any delayeﬂ“mer'cal Floquet stability analysis of thg family. The lower

zero-mode excitation will be destabilizing regardless of thestability bound for the stable band of periodic state arises from a

dispersion. Hence, the sign 6F (a) is unimportant in Eq. different mechanisni51] beyond the scope of the current theory.
(16b), and a necessary condition for instability is that, at the
same thickness, the large lower wave-number pulses carry . SEL':iEMg‘OASP?_EE;'IESZ:ﬁgLAATlON
more flow than the small, high-frequency, harmonic waves,

viz. (Q)" is negative. The sign dfQ)’ is very much a func- The invariance of the slow-evolution equations in E§.
tion of the shape of the periodic states. To leading order foand(12) and their linearized versiofl4) to the transforma-
any scalar gradient flowWQ)=2(H?) as in Eq.(4d) and, for  tion ¢~a¢ and 7—ar yields a growth rate—wh, in Eq.
nearly harmonic waves near the neutral wave numbel (163 that scales linearly with respect to the wave number
with only one or two significant Fourier mode&)’ is al-  of the modulation disturbance. Since the GKS equat®n
ways negative since the wave amplitude grows with decreasias a quadratic nonlinearity involving one derivative, any
ing @, which is used as the bifurcation parameter in the Hopfundamental Fourier mode in the wave-number gradjgnt
bifurcation analysis. In fact, the near-neutral expressim  will excite its overtone in a rapid cascading of energy to
shows thatQ)’ becomes less negative asdecreases from higher wave numbers. Due to the quadratic interaction and
unity. Hence we expect near-neutral waves to be more modyhe linear dependence of the growth rate on the mode num-
lationally unstable. If they are indeed unstable, there exists Ber, the amplitude of thenth harmonic of y, scales as
critical wave numbeg,, defined byD =0, below which the enen,u,ot, wheree is the amplitude of the fundamental ap

periodic states are stable. For localized pulses beyond the jiq 5rowth rate. Summation of this geometric series imme-
validity of Eq. (5b), the rate of increase in amplitude must diately shows

compete against the corresponding increase in speed to
specify the stability, as seen in Ed.6b). This competition is

0 -1 -1
entirely determined by the shape of the waves and, for near- Xx~ (e =1) "t~ (t—1) 7, (17)
neutral waves, the phase lag between the locked Fourier har- _ .
monics[44,45. wheret;~—Ine. We hence expect thg jump to develop in

In Fig. 5, we favorably compare the upper boundo the finite time in the manner described by H47), and with a
stable band of stable periodic states from Etp) to our  blow-up timet; that scales as logarithm of the disturbance
numerical Floquet stability of the, zero-mean branch re- amplitudee.
ported in[35]. A simple expansion of Eq(16) at large That the singularity formation dynamics is self-similar
shows that this stability bound, approaches 0.75 asap-  With a (t;—t) ~* scaling can be verified by a simple manipu-
proaches infinity. This limit is actually reached very rapidly lation of the slow-evolution equation®) and (12). These
and, by 5=2, a, can be accurately approximated by 0.75.two partial differential equations can be converted into two
Hence periodic states between 0.75 and 1 are unstable &®upled ordinary differential equations,
modulation instability at larged. The slight deviation from
the numerical value is due to higher-order corrections in the . KQ) , ,
long-wave expansiori7), since the current theory is only nf +5_a (9)g’—4ff'=0,
valid to leading order in.. However, the excellent agreement
underscores the fact that the current modulation instability of
the periodic states, with dominant coupling with the Galilean 79’ +
mode, is more dominant than the liner and classical phase
modulation instability, which only appears in the next order
in v. by the self-similar transforms

g’ +4gf'=0

o 4f
P (9)+
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X imaginary eigenvalues. The trace Bf also vanishes, and it
x=f(m), a=9(n), 7=—. has either a conjugate pair of purely imaginary eigenvalues
f or two real eigenvalues of opposite sign.
For our subsequent numerical scrutiny, we shall show ¢hat ~ With transformation(21), (x,t) are now expressed as
scales |inear|y in X near the Singu|arity and hence, functions of real Variableég,n), and, since any function of a
x=f(7)~kn near the singularity at~t,. Consequently, a characteristic coordinate is still a characteristic coordinate,
jump in x forms with a ¢;—t) ! scaling in time. the one-to-one map implies thé4,») are also functions of
We shall confirm this expected finite-time singularity for- (X,t). We have freedom in mapping the initial data(aft
mation both by analyzing the wave dynamics of the GKS=0) and we choose
equation in Figs. 1 and 2 more carefully, and by integrating
the slow-evolution equation®) and(12). For the latter pur- §(x,1=0)=0, n(x,t=0)=x (23
pose, we shall adopt the complexification scheme of Garabe- 11 key
dian[46], Moore[47], and Caflisch and Orellarjd8]. More
specifically, Egs.(9) and (12) in the unstretcheck andt

“trick” in the complexification scheme is to
transform the top decoupled system in E2p),

coordinates can be written as o 1 a
=X B, , (29
Jd (a " all alz d ((1)_0 (18) X 3 X 7
Jt\x/ \@x 8z X\ X ' to a hyperbolic system with real eigenvalues by complexify-
ing n,
where the coefficients;; are functions ofx and . We then 97
define the left eigenvectdt™,1) by the eigenvalue problem n—nt+io. (25
|+ 1 a;; app) [+ 1 19 Assumingy and « are analytic functions of; such that the
(=0 ay, A =a~ ("), (19 Cauchy-Riemann condition holds,
with eigenvaluesa™ which are real if Eq.(18) is locally )(r,,Z)(iw, )(Z,I—Xi,,, (26)

hyperbolic, and complex conjugates if elliptic. The charac- . ] )

teristics do not possess any geometric meaning in the latta¥here the SUperscrlptS denote the real and imaginary .parts of
case, but we can still proceed formally. Since the coefficients: @S usual. A direct consequence of the Cauchy-Riemann
a;; are not constant, the characteristics are not straight line§ondition is that

nor are there always simple Riemann invariances along

T i N iy
them. Instead, we define a pair of characteristic coordinates X7= (XX = (X0~ X0 I Xo- 27
(u,v) for the characteristic curves as This reduces Eq24) to
|"a,+x,=0 alonga’t,=x,, (209 o i o
=-3 B : (28
|"a,+x,=0 alongat,=x,. (20b) X/ ¢ X/ o

To accommodate the elliptic case with complex conju-Such thai B, has two real eigenvalues of opposite signs, and
gatesa™ andl®, we define another set of coordinates appro-the system is now hyperbolic with orthogonal characteristics

priate for the elliptic case, in the é-w plane. If B, in the lower decoupled system has
purely imaginary eigenvalues, we also render it hyperbolic
u+v n—v by transformingd/dn to —i(dldw). Otherwise,B, has real
T Ty (21) eigenvalues of opposite sign, and the hyperbolic lower sys-
tem can be solved in thé % coordinates of Eq(22).
and transform Eqq18) and(20) to Although « and yx are strictly complex numbers after

complexification, we shall only be interested in their values

a @ along the realy axis which also satisfy E¢28). We can then
X 1/B; O X trace(a,y) and (,t) as functions of&,7) by using the usual
t|] A0 B,/ | t ' (22) characteristic methods. However, the tradeoffs in this com-
X X plexification scheme are that the initial data cannot be con-
4 n veniently mapped into thé-w plane by Eqgs(23) and (25)
where and the extra calculation introduced by one more dimension
of the complex variable.
B.— ay—axp 2ap If
1~ _ _ ]
2 ~(Anma) a(x,t=0)=ag(x), 29
B,= anta, —2 which can be analytically continued, it can be transformed to
—2a;8;:1 —(aptaz))’

a(ptiw,E=0)=ay(ntiw), (30
and A=/—(a;;— ayy)°—4a,a,;. In the elliptic region of
interest here A is real and the submatriB, has purely and hence ther (or x) is parametrized byy(=x) at £&=0.
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FIG. 6. Comparison of locally averagedand y profiles from Fig. 1 by direct numerical simulation of the GKS equat@nto those
obtained from the coupled slow-evolution equatith for 5=1. The symmetriax profiles and antisymmetrig profiles for 5=0 from the

slow-evolution equations are shown ().

We hence need to solve the hyperbolic sysi@® and

successfully implemented this scheme to solve the slow-

the lower decoupled system fox,() for all possible values evolution equation. As we shall demonstrate, this approach
of »in the é&-w plane. We follow the orthogonal characteris- can even offer analytical results for the case with small-

tics until w vanishes. From transformatidfb), the values of

(x,t,a,x) at this point of penetration are true values of Eq.

amplitude initial data.
In Fig. 6(@), we locally average the and y profiles from

(22), and hence Eq18), before complexification. We have the simulation of Fig. 1. Fop=1, the « profile shows the
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where (Q)'(a)=(144a°+2a—360°—1282")/3 is the nega-
tive flow gradient. The general complexification scheme can
be simplified here by using

X—X+iy, x—x+ip. (32

Actually, it can be shown that the defect always forms at
x=0 for the KS equation ab=0, and for the initial distur-
bances we adopt later. As a result, E82) can be further
simplified if one needs only to know the evolutionxat0,

a?o) l

‘ln

X—ly, x—iB. (33
Transformation(33) immediately reduces Eq31) to
; ; ; : J | ( 48 4o\ J a) _0 (34
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 ot _ < Q> f (a) . 4ﬁ X =

T

which is hyperbolic whenever E@3)) is elliptic because of
the change in the sign 6f{Q)'(@). Restricting ourselves to
a specific initial disturbance with only one harmonic with
amplitudee,

FIG. 7. Comparison of the singularity formation stage from the
GKS equation and the slow-modulation equations. Solid line: slow-
modulation equations:+: GKS equation with»=0.05; *: GKS
equation withy=0.1; O: GKS equation withv=0.2.

ag=1+€ COX, xo=e€ Sinx,
formation of an asymmetric cusp, while tlyeprofile seems
to jump. As seen from Fig. (B), these features are repro- We can also complexify it to
duced by integrating Eqs9) and (12) for the same condi-
tions in Fig. 1. Excellent quantitative agreement is also evi-

dent. Two characteristic lines of the hyperbolic systdB¥)

We have also examined the self-similar cascading to sUGsanate from every initial point &&=0. They are defined by
cessive overtones with linearly increasing growth rates by

integrating both the GKS equation and the slow-evolution d
equations for a periodic state=0.9) perturbed by periodic qiye== V1682- Q) (@) a. (35
modulations of varying wave numberand amplitudex(0).

According to our theory, the growth ia at a particular e can solve for the characteristics explicitly by substituting
location scales asr(0)e” " or a(0)e*o”, where r=vt.  the solution of linearized version of E€34) into Eq. (35)
Hence Ina/a(0)| should be independent efand «(0) used  and collect up taO(e) terms. Here we just takg, charac-

in the simulation of the GKS equation. The measuteds  teristic lines, although the/_ characteristics behave in a
the local wave number, where the singularity will form and similar manner. The/,. characteristic lines can be resolved
its evolution reflects the wave compression during singularto first order in the disturbance amplitudeas

ity formation, seen also in the world lines of Fig. 2. The

solution of the slow-evolution equation is also shown in Fig. Vi(Yo,t)=Yot+ \/ﬂt+4ef(t)cosryo,

7. Due to its invariance to a stretching transformation in both

x andt, the collapse is exact, and only a single curve resultswhereyy is the origin of the characteristic &0 and

More interesting is that the linear increase iflha(0)] vs 7
f)==1|2 smW 4t — coshy24t+ —

ag=1+e€ cosly, pBy=c¢€ sinhy,

ceases when quadratic interaction excites the overton&<

is evident in Fig. 7, this linear inception region is followed \/‘ \/‘

by another linear region whose slope is twice as large. This is

also because the overtone has twice the growth rate of th®ingularities form when twgy_. (or y_) characteristic lines

fundamental. It is this continuous doubling of the growth ratecross, and they are first observed along the limiting curve to

as the overtones are excited that leads eventually to finitawhich other characteristic lines converge tangentially. A

time formation of jumps iny and «, anticipated in Eq(17).  condition for tangency is thedy./dy,=0, which specifies
We have postulated before that the formation timef v, and, hencey, . However, the singularity at this tangency

these singularities scales asne, wheree is the disturbance appears in the real plane only whgn=0 such thak is not

amplitude. This formation time can actually be estimateda complex number. The defect singularity is then formed at

analytically for 5=0. For this KS equation, Eq$9) and(12) t; defined by

can be written more explicitly in the originak(t) coordi-

nates I ( 3 ) I (smh\/_éltf cosh/2 4
=In

1
| 52 5 % \/_+\/—4t+1

(36)

5(6!) ((Q?ia) —4:)(

J [«
Ix (X) =0 GY  \ihich can be inverted for smallto yield
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FIG. 8. (a) Analytical estimate of ther and y evolution for the initial datar=1+ € cosx and y=¢€ sinx at §=0. (b) Simulated version of
(a) from the slow-evolution equation. The agreement with the analytical result is excellent.

ti~—Ine, (37 formation in @, and a jump iny for all values of 5. One
distinct feature is that the singularity is no longer symmetric
as is consistent with our postulate. By comparing @83) to  with respect tox, and shifts back and away from=0 as
our numerical results from the slow-evolution equations, weseen in Figs. @ and &b).
find it offers an excellent estimate despite its simplicity.
In fact, for the KS equation witd=0, the simplicity of
the complexification scheme leading to E84) allows us to
estimate the Riemann invariants to the leading order along The singularity formation process described in Sec. IlI
each characteristic ling.. from the initial data explicitly, leads to jumps iry anda in finite time. The maximum at
the singularity is actually pushed toward the neutral wave
|, —ap+ @ (_ 2_2 ot %3 o2 numbera,=1, where there are no finite-amplitude periodic
= 2 3 6 ' states beyondy,. This is clearly seen in Figs. 1, 6, and 8,
and it is also evident that the local wave amplitude decreases
such that the values @f and 8 as functions of andy can be to zero. Away from the singularityy is dilated to belowe,
written in closed form, albeit rather complicated ones, afteiinto the hyperbolic region. While severe wave-field compres-
the complexification transforii82) valid for all x. It implies ~ sion and dilation occur during the jump formation stage, the
that shock profile can be estimated. In Fig. 8, we favorablynumber of wave peaks remains the same. Wave annihilation
compare this analytical result to the numerical solution of theonly begins after the jump is formed and, in fact, begins to
slow-evolution equation. relax its amplitude. As seen from the world lines of Fig. 2,
For the general case af#0, the complexification esti- the singularity quickly evolves into a wave sink whose speed
mates are still possible, but not as simple as before. Expliciis lower than the wave speed behind it and higher than the
estimates are also very cumbersome to derive. Neverthelessave speed in front. Waves with decreasing amplitude are
one still sees singularity formation time scaled-dse, cusp  then sucked into the sink on both sides. This precipitates a

IV. JUMP RELAXATION
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FIG. 9. Jump relaxation from the simulation of the slow-evolution equation with initial @&@.85-0.1 cog(x—m)/2) and y=0.023%x
—r) for 5=0 (time step: 0.3and with initial dataow=0.85-0.1 co$(x—)/2) and y=0.021x— ) for 5=0.1 (time step: 1.2 Relaxation to
a uniform y,=0 and «,=0.66 is evident.

dramatic drop in the local wave number at the singularityditions, an exact solution over one period to our slow-
that cannot be captured by our slow-evolution equationgvolution equations exist and have the unrealistic forms
which are valid over the stretched long scales and for small

amplitudes. Both the coalescence event at the singularity and a=ag(1-4bt),
the dilation effect away from it then push the entirelistri- (39
bution below «, very rapidly. In Fig. 2, for example, the x=b(X—Xg)/(1—4bt),

singularity forms atr;=vt;=1.5 and byr=2.0, the entire
distribution is belowe,=0.89 for the corresponding=1 as  whereqay, b, andx, are arbitrary constants. This solution will
seen in Figs. 5 and 10. From Fig. 2, it can be seen that theventually lead to a negative wave number, because the
wave number at the singularity remains the highest everquation is not cognizant of the fact thatand(Q) in Eq.
when the entire distribution has entered the stable hyperbolic) are limited to a wave number between 0.5 and 1. Our
region. Moreover, they jump is not at all affected by the numerical scheme will sometimes pick up Eg8) after the
coalescence. The nonlinear coupling that serves to steep@quilibrium (a(x), x(x))=(a,,0) is reached. We simply ig-
the a and y distributions to form singularities now acts to nore this numerical artifact since it corresponds to shock
relax thisy jump. steepening.

Since we do not know the exaatand y profiles created The singularity relaxation process is also distinct 10
by coalescence, we have integrated the slow-evolution equand § >0. The asymmetry with respecttahat exists during
tions with some arbitrary profiles resembling the profilesthe formation stage in Figs(#® and &b) for §>0 persists
from the GKS solution at this stage. They have a cusp in during the relaxation stage. The singularity hence continues
and a jump iny. As seen in Fig. 9, such profiles with the  to shift as seen in Fig. 9. Moreover, a jump dncan also
distribution belowe, relax to a uniformea distribution o, ~ develop ford >0, such that the front side of the cusp actually
and a uniform zergy distribution. We note that for all con- slips down relative to the back one. Aqjump is hence
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created to accompany thejump. Both jumps then decay to smaller thanc, . Hence the entire jump relaxation process
zero at equilibrium, witha approaching a uniform equilib- cannot extend beyond equilibrium. The “entropy” condition
rium valuea,, andy approaching zero due to mass conser- )

vation. C_>s>cC,

After the shocks are formed, the characteristics converge - .
and there are certain domains on the or &7 plane that must t_)e _Sat'.Sf'ed for all time. . . .
cannot be reached by characteristics emanating from the ini- A Similar integral of they evolution equatior(9) yields
tial data att (or 7)=0. To determine the values afandy in g (L
these domains, we need to track the shocks, and impose con- — f xdé=Aq—sAy. (41)
servation laws across them. Some of these laws, like wave a7 Jo

eak balance, arise naturally from the governing equations _ _ . .
P y 1ol g ing & However, if we impose the physical constraint that the total

amount of liquidS 5yd& must remain constant, one immedi-

nally. It is the mass conservation law that will allow us to .
ly obtains the shock speed

estimate the shock speed, and hence track the shocks to il 3

next time step. In fact, ther and y values at the jump can A

. : : : q
then be estimated for the next time step from an expression S= — . (42)
we shall derive. These values at the shock could then serve Ax

as boundary values which, in conjunction with the initial Hence, given ther and y distributions at a given time, the

data, can then specify the and x values for the entire do- shock location at the next time step can be estimated from

main at the next time step. Characteristics from the shockii: i
! . . .Eq. (42). However, for the shock to serve as boundaries for
can reach domains that are not accessible to characteristics

from the initial data. Ther and y values at the shocks must x;rggtrg reéltcl:?sl s::qzr:;t,insucffrlomatth%or?nai\{ir; 'Q:gei:r?lebéo
be estimated at every time step, as the shock speed is deter- 9
. D : . feached, thexr. and y.. values at the shock must be deter-
mined from the distributions at a given time. Other than pro- . T =
e o . ined. To this end, we note that

viding the necessary boundary conditions for our numerical"
scheme, the conservation laws, especially the natural ones, da. da. da. dw. Jda.
also provide invaluable information about the dilation dy- d —=——+4+ —8=———+—35.
namics. We shall first derive a natural node conservation T T & 9& 43
law, and then impose the mass conservation law to estima
shock speed. i

_ . the shock and using E¢42), we can updater.. for the next

The net global dl!atlon_ rate d_ue to the consumption of thetime step. Similarly.y.. can be estimated by

waves by the relaxing singularity and the final equilibrium =
wave numbemr, can gctuallyi)e Lestlmated from global mass dy.  dx. dx- . 90 dx- .
and wave conservation. L&t= [ jad¢ be the total number P + P S=— 07—+ P S.
of waves(peaks or nodgsover a periodic domain of size T T § § §
containing a relaxing singularity. Integrating thesvolution
equation(12) over the domain then yields, from the Liebnitz
rule,

ﬁence, by evaluating all thé derivatives on both sides of

We use these values of. and y.. at the shock locations, in
conjunction with thea and y distributions away from the
shock, to determine the distributions at the next time step.
dN s L As the shock relaxetx approaches the uniform equilib-
= J' o, dé+ f a,dé—S(a,—a_)=Aw—SAa, rium distributiona, andy approaches zejpa, anda_ must
dr Jo St both approache,, while c,, c_, and s should approach
(39 each other such that the wave consumption process stops.
This immediately yields a resonance condition for the equi-

wheres is the speed of the singularity, subscriptsdenote jiprium wave number and the equilibrium speed of the jump,
values after and before the jump afdidhe change across the

jump, Aw=w, —w_, andAa=a, —a_. Since the nonlinear o d
frequencyw is justca, one obtains lims=c(ae,x=0)=Clag)=|-"| (a), (43
T— 0 X=0
dN _ ) . . .
—=—a_(c_—S)—a,(5—c,), (40)  Viz. the wave speed should equal the differential flow rela-
dr tive to a change iny. For the current systemgq/dx),-o

vanishes exactly from Eq8), and one concludes that the

and it simply states that the wave annihilation rate is deterfing| defect speed vanishes. From the speed exprefSin
mined by the differential between the wave speed and the

defect speed on both sides of the jump. Note that both quan- ae=3. (44)
tities in the brackets of Eq26) must be positive, because a

local dilation process occurs at the jump, and a wave sourc€hat the speed of the jump singularity approaches zero is
is formed if they are negative. The present formulation can€lear from the world lines of Fig. 2, and, in Fig. 10, we
not handle a wave source, since the finite-amplitude wavedepict the change in the number of world lines in the GKS
require some transient period and length to grow to finitesimulation of Fig. 2 as a function of time and show an ap-
amplitude. Without a proper description of the wave generaproach toa,=3%. We have also verified the validity of Eq.
tion mechanism, the jump must relax to zero the instans ~ (40) by inserting the values ofa_=0.94, a,=0.94,
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1 . : . ; . . the surrounding wave number has been dilated foMass

conservation, however, is a generic physical property that
0.85¢ 5=1 1 must be obeyed by many systems described by the CGL
09L # = =X m X — o _ o ) equation. It has, however, been removed in the latter’s deri-
N vation[17,44. This is an omission that can obscure the true
0.85f * TN 1 wave-number selection mechanism, since the current
o8k xS ] coupled mechanism is far more dominant as it enters in the
A ) . ~ leading order of the modulation stretching in Ed@). Nor is
30750 . it sufficient to introduce the zero mode as a slave mode to the
v * phase dynamics of the CGL equation, as is often done for the
o7r . 7 Goldstone drift mode. We are currently extending the CGL
0650 I formulation to include the zero-mode dynamics.

* We also note that the current theory pertains to the selec-
06r x % x tion of a periodic state, but that the asymptotic state at the
055k l end of the modulation instability may not be even locally

periodic, as seen in the simulation of GKS equation in Fig. 1.
0.5, Y ] y > Y 3 a5 In fact, the pulselike structures at this stage often have ir-

regular and discontinuous separation and amplitude as re-
sidual effects of the noise-induced, defect-driven dynamics.
FIG. 10. The average wave number within the domain of simu-The final pulse created by coalescence at the jump before it
lation of the GKS equation in Fig._ 1._The predicted in_itial wave relaxes completely, for example, is typically much larger
node consumption rate at the beginning of the relaxation procesghan the others, as seen in Fig. 1. These localized structures
from Eq. (40) is shown. The parameters_=0.94, a,=0.94,  interact individually instead of through a collective modula-
Xx-=0.03, andy, =0.005 are obtained from a simulation of the jon jnstability. The resulting dynamics cannot then be ana-
formation process with the slow-evolution equations. Relaxation tq,,;aq by assuming local periodicity, and the slow-
an equll!prlgm wave number |s‘also evident. The .s.lllghlt deviation Ofmodulation description throughy periodic waves becomes
the equilibrium number frong is due to the annihilation of one inappropriate. In earlier papef49,50, we showed that, for
additional peak. This is quite remarkable, considering the smal ome systems, the current peri,odié: state selection,process
number of peaks between defects and the irregular spacing at the ! . T
i can be followed by another one involving individual pulse
end of evolution.
coalescence, such that the number of pulses can decrease
further. Such coalescence can also be derived by a coupled
amplitude-phase equation, but the amplitude now corre-
sponds to the amplitude of a single pulse and its phase sepa-
ration from the neighboring pulses. The subsequent dynam-
ics then takes on a distinctly localized feature involving
individual pulses. The coarsening process hence may con-
V. SUMMARY tinue beyond the modulation instability, and the final average
pulse spacing can be much longer thaw ., the “peri-
dic” state selected by the modulation instability.

x =0.03, andy =0.005 estimated from the complexifica-
tion scheme at the instant of singularity formatiorrat 1.5.
As is evident in Fig. 10, it accurately estimates the initial
wave consumption rate as the singularity relaxes.

Unlike near-critical CGL systems, which have a narrow
unstable band and which do not respect mass conservatiof}
we have shown here that wave-number selection for a
gradient-flow system is a unique mechanism, and that there
is a specific preferred wave number defined by Eq(44). This work is supported by a NSF grant and a NASA
This is because thg Galilean zero mode of these systemsgrant. Y.Y. is grateful for financial assistance from the Cen-
can couple with nonlinear dispersion to leading order to trig-ter for Applied Mathematics at Notre Dame. We would also
ger the formation of a jump defect that annihilates waves asike to thank D. T. Papageorgiou for sharing his preliminary
it decays. The defect can only relax to zero amplitude whemwork and for informing us of the complexification method.
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