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Nonlinear wave-number selection in gradient-flow systems

Hsueh-Chia Chang, Evgeny A. Demekhin,* Dmitry I. Kopelevich, and Yi Ye
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556

~Received 23 September 1996!

The selection of a final periodic state~wave pattern!, out of a family of such states, is shown to be governed
generically by defects for the lowest order gradient-flow model, the generalized Kuramoto-Sivashinsky equa-
tion. Such defects arise when the nonlinear dispersion relationship of the periodic states couples with the
flow-inducing Galilean zero mode, in a manner unique to gradient dynamics, to trigger a modulation instability
and a self-similar, finite-time evolution toward jumps in the local wave-number gradient and mean thickness.
This coupled modulation instability is much stronger than the classical phase modulation instability. The jumps
at these defects then serve as wave sinks whose strength relaxes in time. Due to such consumption of wave
peaks~nodes! at the relaxing defects, the bulk wave number away from the defects decreases in time until a
unique stable periodic state is reached whose speed is equal to its differential flow rate with respect to change
in thickness. We estimate the defect formation dynamics and the final relaxation toward equilibrium analyti-
cally, and compare them favorably to numerical results.@S1063-651X~97!10003-4#

PACS number~s!: 47.54.1r, 47.20.Lz, 47.35.1i, 47.20.2k
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I. INTRODUCTION

The translationally invariant, uniform rest state of an e
tended system is typically unstable to one-dimensional
turbances within a band of wave numbers. These Fou
modes can grow and saturate to form a family of on
dimensional periodic states~rolls or waves!. However, only a
subset of this family of saturated states are stable, and
final state approached by any initial condition is presumed
lie within this stable band. Considerable effort has hen
been expended to determine the stable band, and has l
classical secondary stability criteria for periodic states l
the Eckhaus bound for nondispersive systems, the Lan
Newell and Benjamin-Feir criteria for dispersive system
the Busse balloon, and other two-dimensional stabi
bounds@1–5# for rolls.

Although a band of periodic states stable to all dist
bances can sometimes be found, which member of this
set is eventually selected and the dynamics of the selec
process remain unknown, and are active areas of rese
Suggested approaches include mean-field theories f
phase transition@6,7# which often predict that noise selects
unique periodic state with the lowest energy. However,
presence of a continuum of stable and unstable perio
states, without an obvious functional for minimization, re
ders such statistical theories difficult and uninformative
the most general case. Recently, it has been established
the large-time dynamics of near-critical extended system
dominated by local domains~patches! of monochromatic pe-
riodic states separated by defects~domain walls or disloca-
tions! @8,9#. Such defects can move as one periodic st
expands at the expense of another. Wave-number sele
can also proceed as wave-number shocks appear in the
area, and propagate toward or away from the defects@10#.
The wave number selected is then related to the front se

*Permanent address: Dept. of Applied Mathematics, Kuban S
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tion problem@11,12#, since there are many possible wav
number shocks. Insofar as the defects interact and move
serve as sinks and sources of wave-number shocks,
nucleation, interaction, and annihilation then become k
steps in the selection of the final periodic state. Neverthel
it has not been established whether a preferred state is alw
selected, and there seems to be a multitude of selection
cesses. Statistically stationary, defect-mediated spatiotem
ral chaos can also occur if defects are generated and an
lated continuously, and a uniform periodic state is ne
reached@13#.

The aforementioned theories for extended-domain
namics are typically described by complex Ginzburg-Land
~CGL! type amplitude equations appropriate for near-criti
systems with a narrow band of unstable wave numbers
periodic states, as typified by the well-studied Rayleig
Bénard instability. It is known for such systems that th
nucleation of defects is greatly dependent on the Goldst
mode ~drift flow in Rayleigh-Bénard instability! whose dy-
namics must be coupled to the CGL. At a finite Prandtl nu
ber, a periodic state can induce a drift flow within the flu
which can, in turn, compress the local wave number into
unstable region such that the ‘‘stress’’ can only be reliev
by the formation of a defect. This nucleation process is of
modeled by two coupled equations for the phase of the c
plex amplitude in the CGL~whose gradient is the wave num
ber! and the Goldstone zero mode@14,15#. However, such an
analysis usually does not extend beyond numerical sim
tion. Recently, Charru and Barthelet@16# have also observed
defects with jumps in the local film thickness in shear
two-phase flow. These defects then become either w
sinks or wave sources that are the main driving forces beh
the wave dynamics. The thickness jumps also underscore
importance of the zero mode in defect dynamics. Exac
how the zero mode couples with the modulation phase in
bility to produce defects has yet to be elucidated. One
proach is to assume that the zero-mode dynamics is slave
the phase dynamics, and its effect on the latter can be
jected by center manifold theory, for example, into high
te
2818 © 1997 The American Physical Society
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55 2819NONLINEAR WAVE-NUMBER SELECTION IN . . .
order terms in the phase equation@17–19#. Defect formation
is again demonstrated numerically, but a generic pattern
lection process is still not revealed. It is also questiona
that the zero mode is a slave mode in light of Charru a
Barthelet’s observation of ‘‘hydraulic’’ jumps at the defect

To complicate matters, there is an important class
extended-domain systems whose unstable band is not
row, and the final periodic states can often contain ma
Fourier modes. They are hence beyond the CGL descrip
In the limit of large wavelength, the periodic states resem
an array of localized structures~solitary waves or pulses!
which contain a large band of Fourier modes. The la
bandedness of this class of systems is due to mass cons
tion, and its dynamics is described by scalar evolution eq
tions of the gradient conservation form

]h

]t
52

]

]x
q~h,hx ,hxx ,hxxx!. ~1!

They include thin-film lubrication equations for falling films
evaporating film with Marangoni effects, reaction fron
sheared films and core-annular flows, etc.@20–27#; Cahn-
Hilliard equations for phase transition if concentration
used as an order parameter@28#; liquid jets in air @29#; and
others. Because of the gradient operator, the homogen
state is neutrally stable and, because a long-wave stabi
tion mechanism does not exist, the unstable band can ex
to zero wave number. The same formulation can also
applied to vector gradient-flow evolution equations, but
shall restrict ourselves to the scalar case here. For co
nience, we shall adopt the thin-film nomenclature and re
to h as the film height andq the flow rate. Each derivative
corresponds to a higher order in the long-wave Benny-t
lubrication expansion, and we have truncated the expan
at the fourth derivative.

Although the gradient flow described by Eq.~1! is one
dimensional, its region of validity is considerable for mo
open-flow extended systems it describes. Such hydro
namic systems often obey some form of Squire’s theor
such that transverse variations are filtered away from sm
amplitude noise with a large two-dimensional Fourier co
tent. As a result, at a large distance downstream, the w
patterns are essentially one dimensional with variations
the streamwise direction only. We first note that, unlike
CGL equation, any global uniform state~h5const! is a so-
lution to the translationally invariant equation~1! with no
x-dependent coefficient. However, mass conserva
through the boundary condition stipulates a particular glo
uniform state which is chosen through scaling and reduc
to be the zero state here. Expanding about the zero unif
state and retaining leading-order terms inh ~amplitude ex-
pansion! and in]/]x ~long-wave expansion!, one obtains af-
ter proper scaling to remove the maximum number of para
eters the following generic evolution equation, t
generalized Kuramoto-Sivashunsky~GKS! equation or the
Kawahara equation

]h

]t
1

]q

]x
5

]h

]t
1

]

]x
~2h21hx1dhxx1hxxx!50, ~2!
e-
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with a single parameterd for the dispersion term. A moving
frame transformation is used to eliminate anyhx term. Ex-
pansion about nonzero uniform states will only contribute
this removable term, and hence one can expand abou
zero state without loss of generality. This is hence the m
general weakly nonlinear equation for gradient-flow system
and it has been the subject of many studies@30–39#. For
nondispersive systems withx→2x symmetry,d vanishes
exactly, and one obtains the Kuramoto-Sivashunsky~KS!
equation. The unique invariance of Eqs.~1! and~2! to a shift
in the mean film thickness is due to the gradient form, a
this Galilean symmetry is most important in its dynamics.
permits a local thickness variation from zero via a slo
modulation instability.

A simple normal mode analysis reveals that the band
unstable wave numbers for the zero uniform state lies wit
the bandaP~0,1! with a neutral wave numberan51 and a
maximum-growing mode ofamax51/&. The normal mode
analysis also reveals that the phase speeds of these ba
unstable modes are

ĉ~k!52dk ~3a!

such that the phase speed of the neutral mode is

ĉn5 ĉ~1!52d. ~3b!

In an earlier bifurcation analysis@35#, we showed that a fam
ily of finite-amplitude periodic states with zero avera
thickness bifurcate supercritically froman with speedcn and
zero amplitude into lower wave numbers. This soluti
branch was traced numerically, and an entire familyg1 with
wavelengths ranging from 2p to infinity was uncovered. In
contrast, the narrow band of periodic states for the C
equation does not extend to states with infinitely long wa
lengths. In fact, the large Fourier content of the localiz
structures in the infinite wavelength limit is beyond th
weakly nonlinear, nearly sinusoidal description of CGL-ty
amplitude equation. In Fig. 1, we subject a high-wav
number member~a050.9! of this family for d51.0 to a spa-
tially periodic disturbance whose wavelength is much lon
than that of the periodic state. The disturbance wave num
is na0, with n50.05. Consequently, the modulation envelo
encompasses about 20 wave peaks. As is evident, the am
tude of the periodic wave and envelope approach zero
finite time at several defect locations where the local wa
numbera also increases. This compression of waves see
to accelerate the defect formation process. The mean th
nessx jumps discontinuously at the defect, and this jump
further amplified by the compression effect. At a later sta
of the dynamics, however, wave compression is so sever
the defects that it actually precipitates peak coalescence
that the net number of waves~nodes or peaks! decreases. The
local wave number at the defects also drops precipitou
when waves begin to disappear there. This decrease in
wave number at the defect immediately triggers a relaxa
process for the jump in the mean thickness, until it becom
almost uniform throughout the domain. During the rela
ation, however, the jump defect continues to annihil
waves by coalescence, such that the average wave nu
over the entire domain decreases monotonically. This d
tion process driven by the defect wave sink stops when thx
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FIG. 1. A zero-mean-thickness periodic state of theg1 family of the GKS equation atd51, with a50.9, is subjected to a long-wav
periodic disturbance with wave numberna, wheren50.05. The unstable state evolves toward a stable periodic state with a lower
number.
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55 2821NONLINEAR WAVE-NUMBER SELECTION IN . . .
jump of the latter relaxes to zero. An equilibrium wave nu
berae is then reached at that point which is much lower th
that of the initial periodic state. The amplitude of the fin
selected state is larger, and its shape begins to take on
localized pulse configuration with a broader Fourier conte
The peaks of the individual waves are traced in the wo
lines of Fig. 2. The formation of a wave sink defect in fini
time is evident. We note that the defect moves during
relaxation stage. However, while the initial periodic sta
travels with a negative speed, the defect relaxes to z
speed, which is also the speed of the final state.

It is clear from the above simulation that the wav
number selection process of the GKS equation is driven
defects in a manner very different from near-critical syste
described by the CGL equation. Exploiting the translatio
and Galilean symmetries of the equation, we shall derive
coupled first-order nonlinear partial differential equations
the gradient or conservation form for the slowly varyin
wave numbera and mean thicknessx. These equations de
scribe the conservation laws for wave nodes~peaks! and
mass. They replace the coupled phase-amplitude equa
from the CGL formulation with the mean thickness as
explicit representation of the Goldstone mode.

In particular, the classical sideband modulation stabi
of periodic waves involves a long-wave perturbation of t
zero eigenvalue corresponding to the translational invaria
at the short scale. The resulting phase diffusion equation
the higher-order KS equation, describes how the modula
introduces a phase shift relative to the original perio
wave. This approach presumes that the phase dynamic
sociated with long-wave perturbation of the translatio
zero eigenvalue is dominant. This phase-dominant the
can only produce defects if higher-order terms in the lo
wave modulation expansion and amplitude expansion, fr
for example, the projection of the Goldstone zero mode,
included@18,19#. In contrast, we show here that the Galile
invariance of a gradient-flow system introduces an additio
zero eigenvalue at short scale, and a second dominant m
for the modulation sideband instability. The translational a
Galilean dominant modes will be shown to be coupled

FIG. 2. The peaks of the waves in the simulation of Fig. 1
traced as world lines. The creation and relaxation of wave-s
defects are evident.
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leading order to produce defects~and modulation instability!,
and are hence much more dominant than a purely phas
stability. Moreover, our current theory does not involve
amplitude expansion, and is hence valid for all members
the periodic-wave family up to the solitary pulses. Howev
due to this extension, unlike the CGL formulation, the spe
and ‘‘flow rate’’ of the entire family of periodic states mus
be estimateda priori. The coupled equations then descri
how the domain is covered by this family of periodic state
and how the family members interact dynamically~and
slowly! as governed by node and mass conservation. M
interestingly, we show that a unique final state satisfying
resonance condition is always selected by this mechanis

A defect forms when a sharp boundary appears betw
two patches of locally periodic states, and, since the de
escapes our description of slow modulation evolution alo
the periodic family, its formation corresponds to a blow-
solution to our coupled equations. This is shown to occu
our leading-order expansion in]/]x whenever the coupled
equations, linearized about a particular periodic state,
come elliptic with complex eigenvalues. The change of ty
from hyperbolic to elliptic then offers a very simple criterio
for the stability of the states to long modulation disturbanc
~sideband instability! that is analogous to the Eckhaus a
Lange-Newell criteria for the GL and CGL equations. Lik
the latter, near-neutral states are found to be modulation
unstable.

Unlike the CGL defects, these defects exhibit jumps in
mean thicknessx and the wave-number gradient in the finit
time singularity formation phenomenon shown in Figs. 2 a
6, which we can estimate analytically with a complexific
tion technique. The hydraulic pump in mean thicknessx
drives this defect with a speed that is faster than the perio
waves on the lower thickness in front of it, and slower th
those on the higher thickness behind it. As a result, th
defects act as node sinks, and are very different from
CGL defects. The wave number on either side of the de
hence decreases as wave nodes are consumed, until the
come stable to modulation stability. The blow-up behav
for unstable states then works in reverse to relax the jum
until x is spatially uniform. We are also able to describe th
relaxation stage theoretically, and offer an accurate estim
of the final equilibrium wave number when the node anni
lation process terminates. This then fully elucidates the
neric periodic state selection mechanism for gradient-fl
systems. The local dynamics is driven by the modulat
instability and evolves along the periodic family from a
unstable high wave-number region with small-amplitu
sinuous waves to a unique pulselike stable state with la
wavelength and amplitude.

II. PERIODIC FAMILY, SYMMETRY,
AND SLOW DYNAMICS

Consider a saturated finite-amplitude, periodic waveH
solution to Eq.~2! which propagates at a constant speedC
and we chooseH such that its mean~average! thickness is
zero. Note the distinction between the speedC of the finite-
amplitude wave and the phase speedĉ of Eq. ~3a! for waves
of infinitesimally small amplitude. ThenH is described by

e
k
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FIG. 3. Theg1 zero-mean-thickness periodic solutions of the GKS equation atd50.3 and 5.0. The horizontal scale has been stretched
2p/a0, such that all periodic states have the same scaled wavelength.
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H-1dH91H82CH12H25Q , ~4a!

H~x!5H~x12p/a!, ~4b!

^H&50, ~4c!

^Q&52^H2&, ~4d!

where Eq.~4a! is in the moving frame with speedC, 2p/a is
the spatial period,Q is the flow rate in the moving frame an
^ & denotes integration over one spatial period. A unique f
ture of these finite-amplitude, zero-mean periodic state
that they have different flow ratesQ, and hence can trigger
corresponding change in the film thickness if a distribut
of periodic states is present. This is the key mechanism in
modulation instability. The periodic solutions to Eq.~4! for
small d has been estimated by Chang@34#, and for larged
by Chang, Demekhin, and Kopelevich@35#, Renardy@33#,
Christov and Velarde@38#, and Bar and Nepomnyashch
@39#. Detailed numerical construction has also been car
out by Chang, Demekhin, and Kopelevich@35#. An infinite
numbers of solution branches exist at the KS limit ofd50
due to a Shilnikov bifurcation of the associated homocli
orbit. However, ford.1.1, only a single branchg1 with a
ranging from 1 to zero remains as shown in Figs. 3 and
This branch bifurcates from the neutral wave numberan51,
and represents saturated periodic states from the uns
band of wave numbers. As seen in Fig. 3, the smaa
solitary-wave limit of this branch corresponds to localiz
one-hump pulses.

Near the bifurcation pointa51, a simple Hopf bifurcation
analysis of the dynamical system corresponding to Eq.~4!
yields, for all d @35#, the speed and flow rate of zero-me
thickness periodic states,
-
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e

d

.
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FIG. 4. Theg1 solution branch ford50.3 and 0.4.
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55 2823NONLINEAR WAVE-NUMBER SELECTION IN . . .
C~a!;2d23ad, ~5a!

^Q&~a!;
1

12
~12a2!@~4a2d1C!21~8a322a!2#.

~5b!

We note that these expressions are only valid fora,1 since
finite-amplitude waves witha.1 do not exist. Ford@1,
cumbersome elliptic integrals@33,35,39# can also be ob-
tained forC and^Q& within the entire range ofaP @0,1#. For
simplicity, we shall use Eq.~5!, and limit ourselves to small
amplitude periodic states with only a few Fourier mod
However, the formulation remains valid for the period
pulses at vanishinga provided that one contends with th
more complex expressions. The variation of the mean fl
rate with respect toa in Eq. ~5b! immediately suggests that
wave-number gradient can induce flow, and change the l
mean thickness from zero due to mass conservation.
change in the local mean thickness, in turn, will be shown
changeC, and hence introduce a possible positive feedb
mechanism.

It is clear from Eq.~5! that the larger pulselike, low-wave
number members of the zero-mean family travel faster
pack more flow than the smaller harmonic waves with wa
numbers near unity. As a result, we expect that a monot
cally increasing wave-number distribution with lower wa
numbers behind higher ones will steepen in its gradient
to the speed differential. However, this nonlinear dispers
~group velocity! effect is also accompanied by a bulge in t
mean thickness due to the concomitant flow gradient. T
question is then whether this local increase in film thickn
will accelerate~decelerate! the increase in the wave-numb
gradient, and destabilize~stabilize! the formation of a uni-
form periodic state. This then involves a study of how
change of the mean thickness from zero will alter the n
linear dispersion relationship inC~a! and the mean flow rate
^Q&~a!. This feedback effect due to the excitation of the ze
mode can even destabilize in the limit of zero amplitude.
this leading order, any wave-number disturbance will n
steepen but simply translate without growth if the me
thickness remains zero. However, the phase lag between
excited mean thickness and the initial wave-number per
bation can produce the necessary delay to amplify the gr
ent of the wave-number disturbance by inducing wave co
pression and dilation through speed gradients. This is
origin of the modulation instability of a uniform periodi
state. At its onset, the disturbances propagate toward
other as the system changes from hyperbolic to elliptic. T
growth is then accelerated by the nonlinear mechanism
form defects with jumps in the wave-number gradient a
the mean thickness.

Frisch, She, and Thual@40# reported that the periodic
states of the KS equation can suffer the above modula
instability due to a coupling between mean flow and non
ear dispersion. ‘‘Viscoelastic’’ behavior corresponding to o
cillations caused by the delay between mean thickness
wave-number gradients in the elliptic region was seen
their numerical simulation. We shall show here that t
modulation can evolve further to form the jumps in me
.
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thickness and wave-number gradient, and that such ju
shift the system from an unstable periodic state to a sta
one, as seen in Figs. 1 and 2.

The above family of zero-mean periodic familyH(x;a) is
a one-parameter family parametrized by the wave numbea,
speedC, or mean flow ratêQ&. However, any member o
this family remains a solution upon a translation inx,

x→x1u,

and a Galilean transformation involving a shift in the me
thickness and corresponding corrections to speed and
rate,

H→H1x, ~6a!

C→C14x, ~6b!

^Q&→^Q&22x22Cx. ~6c!

Since^Q& is the flow rate in the moving frame of a viscou
falling film with the wall moving in the2x direction with
speedC, the flow rate becomes more negative with incre
ing speedC. The increase in wave speed, on the other ha
is due to the thicker film. For falling films, this is because
the decreased wall drag of thick films which amplifies d
persion. These physical factors account for the Galilean s
metry. We also note that this invariance is only valid up
orderH2 in Eq. ~4a!. If there exist higher-order terms inH,
no transformation inC and ^Q& can cancel this shift inH
even for a gradient-flow system. Hence, the invariance
local in H and is exactly correct only for the leading-ord
GKS equation.

The above two symmetries imply that there is a thre
parameter periodic family with nonzero mean thickness. T
family is parametrized bya, u, andx. Instead ofa, one can
also use either̂Q& or C or a combination of these param
eters. We shall assume that the entire domain is covere
members of this three-parameter family, and that the dyn
ics is driven by slow interaction among its members@41#. As
a result, the transformation parameters,a, u, andx become
slowly varying variables in time and space. Due to variati
of the mean thickness parameterx, the local average thick-
ness of the film also varies in the domain. This feature a
the Galilean symmetry in Eq.~6! are unique to gradient-flow
evolution and is not found in, say, the CGL dynamics. Th
are direct results of mass conservation.

The appropriate slow time scale and long length scale
be shown to be

t5nt, j5nx, ~7!

where the stretching is carried out with the modulation wa
numbern of the instability. We hence seek solution to E
~2! in the stationary frame of the form suggested by symm
try ~6!

h5H~x,t !1x~j,t!,
~8!

q5^Q&~j,t!22x2~j,t!,

wherex5^h& is the mean thickness Galilean zero mode a
the omission of theCx term in Eq.~6c! is becauseq is the



ce
h

, a
d

to
ile
i
e

h
x
at
sp

th
-
th
de
de
ar
i
fu
n
t
fe

lo
de
lo
er

lly
ro
io
ll
e
r

ve
m

Fo

ry

nt

on

the
ta-

eral

the
to
shift

ber

ter

des
e
-
re-

-

-

w-

e
for
uc-
of
is-

iz-
on
the

te

a

2824 55CHANG, DEMEKHIN, KOPELEVICH, AND YE
flow rate in the stationary frame whileQ is its counterpart in
the moving frame. The two flow rates are off by a differen
of C^H1x&, but the first term has a zero mean and t
second cancels theCx term in Eq. ~6c! to yield Eq. ~8!.
Hence the usual two-scale expansion immediately yields
ter integration in the short scale due to the solvability con
tion, a long-range mass conservation law

]x

]t
52

]q

]j
52

]

]j
~^Q&22x2!. ~9!

The first term within the gradient accounts for flow due
wave-number variation along the zero-mean family, wh
the second term corrects the flow rate for periodic states w
non-zero-mean thickness. Both contribute to the increas
the mean thicknesŝh&5x. The mean floŵQ& is related to
the slow varying wave numbera~j,t! through Eq.~5b!.

A note of caution about scaling is appropriate here. T
GKS equation is usually derived from both a long-wave e
pansion and an amplitude expansion. In fact, truncation
particular order leading to the GKS equation assumes a
cific relative order between amplitude and]/]x. In this
modulation analysis, however, we have only expanded in
long-wave expansion]/]j without a specific amplitude ex
pansion. A relative order is not imposed. As a result,
defect singularities can be smoothed out by higher-or
terms in]/]j which should be included when large amplitu
and gradient develop at the defects. Nevertheless, singul
formation in finite time does appear at the leading order
]/]j, and it offers a dramatic and accurate estimate of the
dynamics except for the local defect-smoothing coalesce
events. Fortunately, the coalescence rate is specified by
rate-limiting transfer of waves to the defect, and this trans
mechanism is accurately described by the leading-order]/]j
expansion. In any case, since the Galilean invariance is
beyond second order in amplitude, the large-amplitu
strongly nonlinear dynamics cannot be resolved with a s
modulation theory that expands about the Galilean z
mode.

Returning to our illustrative example of a monotonica
increasing spatial wave-number distribution of the ze
mean periodic family, the zero-mean nonlinear dispers
relationship in Eq.~5a! stipulates that the gradient wi
steepen, but that there will be an accompanying increas
the mean thicknessx in the region of the high-wave-numbe
gradient. This was deduced from the~]/]j!^Q& term in Eq.
~9!. However, the 2x2 term in the gradient is a nonlinearx
correction, and it shows that the bulge inx will now steepen
in front. Whether this will serve as a positive or negati
feedback to thea-steepening effect must be deciphered fro
the nonzerox correction to the dispersion relationship.

One can derive more insight by linearizing Eq.~9! about a
zero-mean periodic state of wave numbera0 and examining
slow varying periodic disturbances to the wave number.
simplicity, we introduce nox disturbance initially and the
spatially periodic wave-number disturbance is stationa
The linearizedx evolution equation~9! receives no contribu-
tion form the 2x2 correction term. Instead, the flow gradie
^Q&8(a0)5(d^Q&/da)(a0) induced by the initial wave-
number distribution produces a periodicx excitation with a
p/2 phase lag relative to the wave-number perturbati
e
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since ^Q&8~a0! is negative from Eq.~5b!. Because the ex-
cited mean thickness can, in turn, induce a growth in
wave-number disturbance, this delay is crucial to the ins
bility of the periodic state.

Deciphering this feedback mechanism and the gen
evolution of the wavenumbera along the solution branch
requires a long-range dispersion relationship involving
speedC of the periodic states. This slow evolution is due
the translational symmetry. The phase representing the
in the translational invariance is now a slow variableu~j,t!.
However, since the local solution is required to be a mem
of the periodic family, we can expressu in terms of a slowly
varyinga and its frequencyv, which is related toa through
the speed relationship~5a!,

h„ax2vt1u~j,t!…5h„a~j,t!x2v~j,t!t…, ~10!

and we seek variation ofh in the form on the right. Let
f(x,t;j,t)5a(j,t)x2v(j,t)t, then

]f

]t
52v,

]f

]x
5a. ~11!

The usual two-scale expansion of Eq.~11!, using the scalings
of Eq. ~7!, then yield the desired dispersion relationship af
cross differentiation,

]a

]t
1

]v

]j
50. ~12!

This equation describes the conservation law for wave no
~peaks!. In fact, Eqs.~11! and~12! specify the time and spac
stretching of Eq.~7!. Since this dispersion relationship de
scribes finite-amplitude periodic states, the frequency is
lated to the speed of zero-mean waves in Eq.~5a!, after
proper correction by Eq.~6! to account for finite mean thick
ness,

v5ca5@C~a!14x#a5V~a!14ax, ~13!

whereC~a! is the speed of the zero-mean family in Eq.~4a!,
V~a! its wave frequency, andc~a,x! is the speed of a peri
odic state with wavenumbera and mean thicknessx. The
correction toV due to a change in the mean thicknessx is
then 4ax. This completes the derivation of the coupled slo
evolution equations~9! and ~12! for x anda, respectively.

Since thex correction for the wave frequency is positiv
and larger at higher wave number which is generally true
liquid films because thick films enhance dispersion by red
ing wall drag on wave motion, it relaxes the steepening
the monotonically increasing wave-number distribution d
cussed earlier. Hence thex correction in the mean flow is
destabilizing, while the correction for the speed is stabil
ing. Which process wins will then be a nonlinear competiti
between the two effects. Nevertheless, we expect that, if
steepening continues, the mean thicknessx will be steeper
~more singular! than the wave numbera.

Linearizing Eq. ~12! about a zero-mean periodic sta
with wave numbera0, one notes that, without the 4ax cor-
rection term, anya disturbance would simply translate at
speed of2V8~a0! without growth. However, coupling with
the mean-thickness zero mode contributes a24a0~]x/]j!
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55 2825NONLINEAR WAVE-NUMBER SELECTION IN . . .
term to the growth of the wave-number disturbance. Hen
thep/2 phase lag between a stationary, periodica perturba-
tion and thex excitation it induces can now produce a po
tive feedback to amplify the wave-number disturbance. M
precisely, thea conservation equation~12! stipulates thata
will increase~decrease! with a negative~positive! speed or
frequency gradient due to wave compression~dilation!. The
maximum of the inducedx wave has ap/2 phase lag behind
the maximum of the original stationary wave-number dist
bance such that thex gradient is negative at the wave
number maximum. The 4a0x term, originating from the Gal-
ilean symmetry~6b! as seen in Eq.~13!, then stipulates tha
waves of the same wave number are faster with a hig
mean thickness. As a result, the maximum of the wa
number disturbance now experiences a negative speed g
ent, and grows as the waves are compressed. Converse
minimum will decrease its wave number through wa
dilation—the amplitude of the wave-number disturbance w
grow. However, we have based our argument on the assu
tion that the initial wave-number disturbance remains s
tionary. Actually, it has also translated with a speed
2V8~a0!. As a result, whether the positive feedback throu
mean-thickness excitation remains destabilizing is de
mined by a competition between stabilizing dispers
~speed differential between the nonlinear periodic stat!,
represented by the nonlinear ‘‘group velocity’’V8~a0!, and a
destabilizing zero-mode excitation, represented by the ne
tive flow gradient^Q&8~a0!. The two competing effects ar
coupled through the 4a0 term from Galilean symmetry
which describes how a thicker film accelerates the wav
The physics of the linear modulation instability can be ma
more clearly by noting that, in the linear limit,

]â

]t
52V8~a0!

]â

]j
24a0

]x̂

]j
,

]x̂

]t
52^Q&8~a0!

]â

]j
,

where the linearization is about~â,x!5~a0,0!. Combining
the two equations yields

âtt1V8~a0!âtj24a0^Q&8~a0!âjj50,

which can obviously yield a growing periodic disturbance
â. The interaction between the nonlinear dispersion te
~group velocity! V8 and nonlinear flow gradient^Q&8 unique
to the present system is also clear. A more explicit derivat
of the modulation stability criterion will be offered subs
quently. However, it is first noted that if̂Q&8 is zero, â
never grows. This represents the classical modulation in
bility with only the phase contribution, and underscores
dominance of current instability when mass flow is perm
ted. The former is only unstable when the higher-order
fects in]/]j are included while the latter is already unstab
at the leading order.

We have replaced the slowly varying phaseu by the fre-
quencyv, which is related toa through the nonlinear dis
persion relationship~13!. This leavesa and x as the only
independent slow variables, and they are described by
two coupled first-order partial differential equations in t
e,
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slow-evolution equations~9! and ~12!. It is instructive to
compare them to some classical modulation theories.
long-range, nonlinear dispersion relationship~12! appears in
many classical phase diffusion theories, but the nonlin
frequencyV is often only expressed implicitly, and there
also no explicitly derived correction due to the mea
thickness ~zero mode! adjustment @10,15,17,18,42#. The
zero-mode evolution equation~9!, however, is unique to
gradient-flow dynamics due to mass conservation. This w
first realized by Frisch, She, and Thual@40#, who derived a
similar set of equations for the KS equation, whose coe
cients are determined numerically, from more lengthy mu
scale expansion techniques. However, their coupled eq
tions are linear, and hence they offer no further informat
beyond the onset of modulation instability. The coefficien
of Frisch, She, and Thual’s coupled equations are deri
from a weakly nonlinear amplitude expansion of the sa
ordern as the time scale and long-wave length scale in
~7!. We have confirmed the validity of our slow evolutio
equation at this resolution by inserting the slow-amplitu
expansions~5! into our linearized equations and obtained t
same coefficients as Frisch, She, and Thual, albeit that
coefficients are explicit while theirs must be evaluated n
merically. It should be emphasized, however, that the curr
derivation does not involve any amplitude expansion, a
hence both the linearized version and fully nonlinear vers
have higher resolution than the one resulting from an am
tude expansion. The accuracy of our equation with respec
the amplitude is only limited by the accuracy of^Q&~a! and
V~a! for a far from an . These quantities can be estimat
numerically if high resolution is required. On the other han
energy conservation and the corresponding symmetry a
in some integrable systems, and supply another evolu
equation missing from our dissipative system. For exam
in Whitham’s classical modulation theory for deep wa
waves, there is an equation for slowly varying wave amp
tude ~energy! that replaces Eq.~9! @43#.

Modulation instability occurs for a monochromatic pe
odic state when mass conservation and nonlinear disper
conspire to destabilize any wave-number gradient. Linea
ing the coupled slow-evolution equations~9! and ~12! about
a particular zero-mean solution with wave numbera0, one
obtains

]

]t S â
x̂ D1A

]

]j
S â
x̂ D50, ~14!

where

A5S V8~a0!

^Q&8~a0!

4a0

0 D .
The stability of the periodic state with wave numbera0 to
long modulations~sideband disturbances! can then be ob-
tained by substituting the Floquet normal mode

S â
x̂ D;uei j2lt5uen~ ix2lt !, ~15!

wheren is the disturbance wave number, andl is the eigen-
value of the matrixiA and is independent ofn,
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2826 55CHANG, DEMEKHIN, KOPELEVICH, AND YE
l5 iV8~a0!/26 iAD/2, ~16a!

D~a0 ;d!5@V8~a0!#
2116a0^Q&8~a0!. ~16b!

It is then clear that the periodic state is stable~unstable! to
long modulations if Eq.~14! is hyperbolic~D.0! or elliptic
~D,0! respectively. This condition~16! represents the ana
log of the Echkaus, Benjamin-Feir, and Lange-Newell si
band stability criteria for CGL or nonlinear Schro¨dinger
equations to the present gradient-flow systems. Unlike
purely phase instability of the former systems, the curr
instability involves both phase~wave number! and Galilean
~mean thickness! zero modes. The key physical mechanis
at least at small amplitude, is the delayed excitation of
mean thickness unique to gradient flows. The 16a0 term in
Eq. ~16b! arises from the Galilean symmetry~6b! and its
positive sign reflects the fact that waves with higher me
thickness travel faster. This is generally the case for t
falling and sheared films@44,45# as the wall dissipation be
comes less retarding to wave motion. As such, any dela
zero-mode excitation will be destabilizing regardless of
dispersion. Hence, the sign ofV8~a0! is unimportant in Eq.
~16b!, and a necessary condition for instability is that, at
same thickness, the large lower wave-number pulses c
more flow than the small, high-frequency, harmonic wav
viz. ^Q&8 is negative. The sign of̂Q&8 is very much a func-
tion of the shape of the periodic states. To leading order
any scalar gradient flow,^Q&52^H2& as in Eq.~4d! and, for
nearly harmonic waves near the neutral wave numbera51
with only one or two significant Fourier modes,^Q&8 is al-
ways negative since the wave amplitude grows with decre
ing a, which is used as the bifurcation parameter in the H
bifurcation analysis. In fact, the near-neutral expression~5b!
shows that̂ Q&8 becomes less negative asa decreases from
unity. Hence we expect near-neutral waves to be more mo
lationally unstable. If they are indeed unstable, there exis
critical wave numberac , defined byD50, below which the
periodic states are stable. For localized pulses beyond
validity of Eq. ~5b!, the rate of increase in amplitude mu
compete against the corresponding increase in spee
specify the stability, as seen in Eq.~16b!. This competition is
entirely determined by the shape of the waves and, for n
neutral waves, the phase lag between the locked Fourier
monics@44,45#.

In Fig. 5, we favorably compare the upper boundac to the
stable band of stable periodic states from Eq.~16! to our
numerical Floquet stability of theg1 zero-mean branch re
ported in @35#. A simple expansion of Eq.~16! at larged
shows that this stability boundac approaches 0.75 asd ap-
proaches infinity. This limit is actually reached very rapid
and, byd52, ac can be accurately approximated by 0.7
Hence periodic states between 0.75 and 1 are unstab
modulation instability at larged. The slight deviation from
the numerical value is due to higher-order corrections in
long-wave expansion~7!, since the current theory is onl
valid to leading order inn. However, the excellent agreeme
underscores the fact that the current modulation instability
the periodic states, with dominant coupling with the Galile
mode, is more dominant than the liner and classical ph
modulation instability, which only appears in the next ord
in n.
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III. SELF-SIMILAR DEFECT FORMATION
AND COMPLEXIFICATION

The invariance of the slow-evolution equations in Eqs.~9!
and ~12! and their linearized version~14! to the transforma-
tion j→aj and t→at yields a growth rate2nlhr in Eq.
~16a! that scales linearly with respect to the wave numben
of the modulation disturbance. Since the GKS equation~2!
has a quadratic nonlinearity involving one derivative, a
fundamental Fourier mode in the wave-number gradientxx
will excite its overtone in a rapid cascading of energy
higher wave numbers. Due to the quadratic interaction
the linear dependence of the growth rate on the mode n
ber, the amplitude of thenth harmonic of xx scales as
enenm0t, wheree is the amplitude of the fundamental andm0

is its growth rate. Summation of this geometric series imm
diately shows

xx;~eem0t21!21;~ t f2t !21, ~17!

wheret f;2lne. We hence expect thex jump to develop in
finite time in the manner described by Eq.~17!, and with a
blow-up time t f that scales as logarithm of the disturban
amplitudee.

That the singularity formation dynamics is self-simil
with a (t f2t)21 scaling can be verified by a simple manip
lation of the slow-evolution equations~9! and ~12!. These
two partial differential equations can be converted into t
coupled ordinary differential equations,

h f 81
]^Q&
]a

~g!g824 f f 850,

hg81F]V

]a
~g!14 f Gg814g f850

by the self-similar transforms

FIG. 5. Comparison ofac in dotted line from Eq.~16! to a
numerical Floquet stability analysis of theg1 family. The lower
stability bound for the stable band of periodic state arises from
different mechanism@51# beyond the scope of the current theory
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55 2827NONLINEAR WAVE-NUMBER SELECTION IN . . .
x5 f ~h!, a5g~h!, h5
x

t f2t
.

For our subsequent numerical scrutiny, we shall show thx
scales linearly in x near the singularity and hence
x5 f (h);kh near the singularity att;t f . Consequently, a
jump in x forms with a (t f2t)21 scaling in time.

We shall confirm this expected finite-time singularity fo
mation both by analyzing the wave dynamics of the G
equation in Figs. 1 and 2 more carefully, and by integrat
the slow-evolution equations~9! and~12!. For the latter pur-
pose, we shall adopt the complexification scheme of Gara
dian @46#, Moore @47#, and Caflisch and Orellana@48#. More
specifically, Eqs.~9! and ~12! in the unstretchedx and t
coordinates can be written as

]

]t S a
x D1S a11a21

a12
a22

D ]

]x S a
x D50, ~18!

where the coefficientsai j are functions ofa andx. We then
define the left eigenvector~l6,1! by the eigenvalue problem

~ l6,1!S a11a21

a12
a22

D5a6~ l6,1!, ~19!

with eigenvaluesa6 which are real if Eq.~18! is locally
hyperbolic, and complex conjugates if elliptic. The chara
teristics do not possess any geometric meaning in the la
case, but we can still proceed formally. Since the coefficie
ai j are not constant, the characteristics are not straight li
nor are there always simple Riemann invariances al
them. Instead, we define a pair of characteristic coordin
~m,n! for the characteristic curves as

l1am1xm50 along a1tm5xm , ~20a!

l2an1xn50 along a2tn5xn . ~20b!

To accommodate the elliptic case with complex con
gatesa6 and l6, we define another set of coordinates app
priate for the elliptic case,

j5
m1n

2
, h5

m2n

2i
~21!

and transform Eqs.~18! and ~20! to

S a
x
t
x
D

j

5
1

D
SB1

0
0
B2

D S a
x
t
x
D

h

, ~22!

where

B15S a112a22
2a21

2a12
2~a112a22!

D ,
B25S a111a22

22a12a21

22
2~a111a22!

D ,
and D5A2(a112a22)

224a12a21. In the elliptic region of
interest here,D is real and the submatrixB1 has purely
g

e-

-
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ts
s,
g
es

-
-

imaginary eigenvalues. The trace ofB2 also vanishes, and i
has either a conjugate pair of purely imaginary eigenval
or two real eigenvalues of opposite sign.

With transformation~21!, (x,t) are now expressed a
functions of real variables~j,h!, and, since any function of a
characteristic coordinate is still a characteristic coordina
the one-to-one map implies that~j,h! are also functions of
(x,t). We have freedom in mapping the initial data at~x,t
50! and we choose

j~x,t50!50, h~x,t50!5x ~23!

The key ‘‘trick’’ in the complexification scheme is to
transform the top decoupled system in Eq.~22!,

S a
x D

j

5
1

D
B1S a

x D
h
, ~24!

to a hyperbolic system with real eigenvalues by complexi
ing h,

h→h1 iv. ~25!

Assumingx anda are analytic functions ofh such that the
Cauchy-Riemann condition holds,

xh
r 5xv

i , xv
r 52xh

i , ~26!

where the superscripts denote the real and imaginary par
x, as usual. A direct consequence of the Cauchy-Riem
condition is that

xh5~xh
r 1 ixh

i !5~xv
i 2 ixv

i !52 ixv . ~27!

This reduces Eq.~24! to

S a
x D

j

52
i

D
B1S a

x D
v

, ~28!

such thatiB1 has two real eigenvalues of opposite signs, a
the system is now hyperbolic with orthogonal characteris
in the j-v plane. If B2 in the lower decoupled system ha
purely imaginary eigenvalues, we also render it hyperbo
by transforming]/]h to 2i ~]/]v!. Otherwise,B2 has real
eigenvalues of opposite sign, and the hyperbolic lower s
tem can be solved in thej-h coordinates of Eq.~22!.

Although a and x are strictly complex numbers afte
complexification, we shall only be interested in their valu
along the realh axis which also satisfy Eq.~28!. We can then
trace~a,x! and (x,t) as functions of~j,h! by using the usual
characteristic methods. However, the tradeoffs in this co
plexification scheme are that the initial data cannot be c
veniently mapped into thej-v plane by Eqs.~23! and ~25!
and the extra calculation introduced by one more dimens
of the complex variable.

If

a~x,t50!5a0~x!, ~29!

which can be analytically continued, it can be transformed

a~h1 iv,j50!5a0~h1 iv!, ~30!

and hence thea ~or x! is parametrized byh~5x! at j50.
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FIG. 6. Comparison of locally averageda andx profiles from Fig. 1 by direct numerical simulation of the GKS equation~a! to those
obtained from the coupled slow-evolution equation~b! for d51. The symmetrica profiles and antisymmetricx profiles ford50 from the
slow-evolution equations are shown in~c!.
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We hence need to solve the hyperbolic system~28! and
the lower decoupled system for (x,t) for all possible values
of h in the j-v plane. We follow the orthogonal characteri
tics untilv vanishes. From transformation~25!, the values of
(x,t,a,x) at this point of penetration are true values of E
~22!, and hence Eq.~18!, before complexification. We hav
.

successfully implemented this scheme to solve the sl
evolution equation. As we shall demonstrate, this appro
can even offer analytical results for the case with sm
amplitude initial data.

In Fig. 6~a!, we locally average thea andx profiles from
the simulation of Fig. 1. Ford51, thea profile shows the
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55 2829NONLINEAR WAVE-NUMBER SELECTION IN . . .
formation of an asymmetric cusp, while thex profile seems
to jump. As seen from Fig. 6~b!, these features are repro
duced by integrating Eqs.~9! and ~12! for the same condi-
tions in Fig. 1. Excellent quantitative agreement is also e
dent.

We have also examined the self-similar cascading to s
cessive overtones with linearly increasing growth rates
integrating both the GKS equation and the slow-evolutio
equations for a periodic state~a50.9! perturbed by periodic
modulations of varying wave numbern and amplitudeâ~0!.
According to our theory, the growth inâ at a particular
location scales asâ(0)enm0t or â(0)em0t, where t5nt.
Hence lnuâ/â~0!u should be independent ofn and â~0! used
in the simulation of the GKS equation. The measuredâ is
the local wave number, where the singularity will form an
its evolution reflects the wave compression during singul
ity formation, seen also in the world lines of Fig. 2. Th
solution of the slow-evolution equation is also shown in Fi
7. Due to its invariance to a stretching transformation in bo
x andt, the collapse is exact, and only a single curve resu
More interesting is that the linear increase in ln@â/â~0!# vs t
ceases when quadratic interaction excites the overtone 2n. As
is evident in Fig. 7, this linear inception region is followe
by another linear region whose slope is twice as large. Thi
also because the overtone has twice the growth rate of
fundamental. It is this continuous doubling of the growth ra
as the overtones are excited that leads eventually to fin
time formation of jumps inx andax anticipated in Eq.~17!.

We have postulated before that the formation timet f of
these singularities scales as2lne, wheree is the disturbance
amplitude. This formation time can actually be estimat
analytically ford50. For this KS equation, Eqs.~9! and~12!
can be written more explicitly in the original (x,t) coordi-
nates

]

]t S a
x D1S 4x

^Q&8~a!

4a
24x D ]

]x S a
x D50, ~31!

FIG. 7. Comparison of the singularity formation stage from th
GKS equation and the slow-modulation equations. Solid line: slo
modulation equations;1: GKS equation withn50.05; * : GKS
equation withn50.1;s: GKS equation withn50.2.
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where ^Q&8~a!5~144a512a236a32128a7!/3 is the nega-
tive flow gradient. The general complexification scheme c
be simplified here by using

x→x1 iy , x→x1 ib. ~32!

Actually, it can be shown that the defect always forms
x50 for the KS equation atd50, and for the initial distur-
bances we adopt later. As a result, Eq.~32! can be further
simplified if one needs only to know the evolution atx50,

x→ iy , x→ ib. ~33!

Transformation~33! immediately reduces Eq.~31! to

]

]t S a
b D1S 4b

2^Q&8~a!

4a
24b D ]

]y S a
x D50 ~34!

which is hyperbolic whenever Eq.~31! is elliptic because of
the change in the sign of2^Q&8~a!. Restricting ourselves to
a specific initial disturbance with only one harmonic wi
amplitudee,

a0511e cosx, x05e sinx,

we can also complexify it to

a0511e coshy, b05e sinhy,

Two characteristic lines of the hyperbolic system~34!
emanate from every initial point att50. They are defined by

d

dt
y656A16b22 4

3 ^Q&8~a!a. ~35!

We can solve for the characteristics explicitly by substituti
the solution of linearized version of Eq.~34! into Eq. ~35!
and collect up toO~e! terms. Here we just takey1 charac-
teristic lines, although they2 characteristics behave in
similar manner. They1 characteristic lines can be resolve
to first order in the disturbance amplitudee as

y1~y0 ,t !5y01A24t14e f ~ t !coshy0 ,

wherey0 is the origin of the characteristic att50 and

f ~ t !5
25

3 S 12 sinhA24t2
1

A6
coshA24t1

1

A6D .
Singularities form when twoy1 ~or y2! characteristic lines
cross, and they are first observed along the limiting curve
which other characteristic lines converge tangentially.
condition for tangency is thendy1/dy050, which specifies
y0 and, hence,y1 . However, the singularity at this tangenc
appears in the real plane only wheny150 such thatx is not
a complex number. The defect singularity is then formed
t f defined by

lnS 3

25e D 5 lnS sinhA24t f2
2
coshA24t f

A6
1

1

A6D 1A24t f11,

~36!

which can be inverted for smalle to yield

-
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FIG. 8. ~a! Analytical estimate of thea andx evolution for the initial dataa511e cosx andx5e sinx at d50. ~b! Simulated version of
~a! from the slow-evolution equation. The agreement with the analytical result is excellent.
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as is consistent with our postulate. By comparing Eq.~37! to
our numerical results from the slow-evolution equations,
find it offers an excellent estimate despite its simplicity.

In fact, for the KS equation withd50, the simplicity of
the complexification scheme leading to Eq.~34! allows us to
estimate the Riemann invariants to the leading order al
each characteristic liney6 from the initial data explicitly,

I65ab1
A6
2 S 2

22

3
a1

25

6
a2D ,

such that the values ofa andb as functions oft andy can be
written in closed form, albeit rather complicated ones, a
the complexification transform~32! valid for all x. It implies
that shock profile can be estimated. In Fig. 8, we favora
compare this analytical result to the numerical solution of
slow-evolution equation.

For the general case ofdÞ0, the complexification esti-
mates are still possible, but not as simple as before. Exp
estimates are also very cumbersome to derive. Neverthe
one still sees singularity formation time scaled as2lne, cusp
e

g

r

y
e

it
ss,

formation in a, and a jump inx for all values ofd. One
distinct feature is that the singularity is no longer symmet
with respect tox, and shifts back and away fromx50 as
seen in Figs. 6~a! and 6~b!.

IV. JUMP RELAXATION

The singularity formation process described in Sec.
leads to jumps inx andax in finite time. The maximuma at
the singularity is actually pushed toward the neutral wa
numberan51, where there are no finite-amplitude period
states beyondan . This is clearly seen in Figs. 1, 6, and
and it is also evident that the local wave amplitude decrea
to zero. Away from the singularity,a is dilated to belowac
into the hyperbolic region. While severe wave-field compr
sion and dilation occur during the jump formation stage,
number of wave peaks remains the same. Wave annihila
only begins after the jump is formed and, in fact, begins
relax its amplitude. As seen from the world lines of Fig.
the singularity quickly evolves into a wave sink whose spe
is lower than the wave speed behind it and higher than
wave speed in front. Waves with decreasing amplitude
then sucked into the sink on both sides. This precipitate
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FIG. 9. Jump relaxation from the simulation of the slow-evolution equation with initial dataa50.8520.1 cos„~x2p!/2… andx50.0235~x
2p! for d50 ~time step: 0.3! and with initial dataa50.8520.1 cos„~x2p!/2… andx50.021~x2p! for d50.1 ~time step: 1.2!. Relaxation to
a uniformxe50 andae50.66 is evident.
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dramatic drop in the local wave number at the singula
that cannot be captured by our slow-evolution equati
which are valid over the stretched long scales and for sm
amplitudes. Both the coalescence event at the singularity
the dilation effect away from it then push the entirea distri-
bution belowac very rapidly. In Fig. 2, for example, the
singularity forms att f5nt f51.5 and byt52.0, the entire
distribution is belowac50.89 for the correspondingd51 as
seen in Figs. 5 and 10. From Fig. 2, it can be seen that
wave number at the singularity remains the highest e
when the entire distribution has entered the stable hyperb
region. Moreover, thex jump is not at all affected by the
coalescence. The nonlinear coupling that serves to ste
the a and x distributions to form singularities now acts t
relax thisx jump.

Since we do not know the exacta andx profiles created
by coalescence, we have integrated the slow-evolution e
tions with some arbitrary profiles resembling the profi
from the GKS solution at this stage. They have a cusp ia
and a jump inx. As seen in Fig. 9, such profiles with thea
distribution belowac relax to a uniforma distribution ae
and a uniform zerox distribution. We note that for all con
y
s
ll
nd

e
n
lic

en

a-

ditions, an exact solution over one period to our slo
evolution equations exist and have the unrealistic forms

a5a0~124bt!,
~38!

x5b~x2x0!/~124bt!,

wherea0, b, andx0 are arbitrary constants. This solution wi
eventually lead to a negative wave number, because
equation is not cognizant of the fact thatC and ^Q& in Eq.
~5! are limited to a wave number between 0.5 and 1. O
numerical scheme will sometimes pick up Eq.~38! after the
equilibrium „a(x),x(x)…5~ae ,0! is reached. We simply ig-
nore this numerical artifact since it corresponds to sho
steepening.

The singularity relaxation process is also distinct ford50
andd .0. The asymmetry with respect tox that exists during
the formation stage in Figs. 6~a! and 6~b! for d .0 persists
during the relaxation stage. The singularity hence contin
to shift as seen in Fig. 9. Moreover, a jump ina can also
develop ford .0, such that the front side of the cusp actua
slips down relative to the back one. Ana jump is hence



o
-
er

rg

in

c
a
on
te
to
o

sio
er
ia
-
c
is
t
e
ro
ica
n
y-
tio
a

th
m
ss

tz

e

te
th
a
a
r
an
v
it
ra

ss
n

tal
i-

rom
for
e to
be
r-

f

p.
-

tops.
ui-
p,

la-

e

o is
e
S
p-
.

2832 55CHANG, DEMEKHIN, KOPELEVICH, AND YE
created to accompany thex jump. Both jumps then decay t
zero at equilibrium, witha approaching a uniform equilib
rium valueae , andx approaching zero due to mass cons
vation.

After the shocks are formed, the characteristics conve
and there are certain domains on thex-t or j-t plane that
cannot be reached by characteristics emanating from the
tial data att ~or t!50. To determine the values ofa andx in
these domains, we need to track the shocks, and impose
servation laws across them. Some of these laws, like w
peak balance, arise naturally from the governing equati
while others, like mass conservation, must be imposed ex
nally. It is the mass conservation law that will allow us
estimate the shock speed, and hence track the shocks t
next time step. In fact, thea andx values at the jump can
then be estimated for the next time step from an expres
we shall derive. These values at the shock could then s
as boundary values which, in conjunction with the init
data, can then specify thea andx values for the entire do
main at the next time step. Characteristics from the sho
can reach domains that are not accessible to character
from the initial data. Thea andx values at the shocks mus
be estimated at every time step, as the shock speed is d
mined from the distributions at a given time. Other than p
viding the necessary boundary conditions for our numer
scheme, the conservation laws, especially the natural o
also provide invaluable information about the dilation d
namics. We shall first derive a natural node conserva
law, and then impose the mass conservation law to estim
shock speed.

The net global dilation rate due to the consumption of
waves by the relaxing singularity and the final equilibriu
wave numberae can actually be estimated from global ma
and wave conservation. LetN5* 0

Ladj be the total number
of waves~peaks or nodes! over a periodic domain of sizeL
containing a relaxing singularity. Integrating thea evolution
equation~12! over the domain then yields, from the Liebni
rule,

dN

dt
5E

0

s2

atdj1E
s1

L

atdj2 ṡ~a12a2!5Dv2 ṡDa,

~39!

whereṡ is the speed of the singularity, subscripts6 denote
values after and before the jump andD the change across th
jump,Dv5v12v2 , andDa5a12a2 . Since the nonlinear
frequencyv is just ca, one obtains

dN

dt
52a2~c22 ṡ!2a1~ ṡ2c1!, ~40!

and it simply states that the wave annihilation rate is de
mined by the differential between the wave speed and
defect speed on both sides of the jump. Note that both qu
tities in the brackets of Eq.~26! must be positive, because
local dilation process occurs at the jump, and a wave sou
is formed if they are negative. The present formulation c
not handle a wave source, since the finite-amplitude wa
require some transient period and length to grow to fin
amplitude. Without a proper description of the wave gene
tion mechanism, the jump must relax to zero the instantc2 is
-
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smaller thanc1 . Hence the entire jump relaxation proce
cannot extend beyond equilibrium. The ‘‘entropy’’ conditio

c2. ṡ.c1

must be satisfied for all time.
A similar integral of thex evolution equation~9! yields

]

]t E
0

L

xdj5Dq2 ṡDx. ~41!

However, if we impose the physical constraint that the to
amount of liquid* 0

Lxdj must remain constant, one immed
ately obtains the shock speed

ṡ5
Dq

Dx
. ~42!

Hence, given thea andx distributions at a given time, the
shock location at the next time step can be estimated f
Eq. ~42!. However, for the shock to serve as boundaries
our numerical scheme, such that domains inaccessibl
characteristics emanating from the initial data can
reached, thea6 andx6 values at the shock must be dete
mined. To this end, we note that

da6

dt
5

]a6

]t
1

]a6

]j
ṡ52

]v6

]j
1

]a6

]j
ṡ.

Hence, by evaluating all thej derivatives on both sides o
the shock and using Eq.~42!, we can updatea6 for the next
time step. Similarly,x6 can be estimated by

dx6

dt
5

]x6

]t
1

]x6

]j
ṡ52

]q6

]j
1

]x6

]j
ṡ.

We use these values ofa6 andx6 at the shock locations, in
conjunction with thea and x distributions away from the
shock, to determine the distributions at the next time ste

As the shock relaxes~a approaches the uniform equilib
rium distributionae andx approaches zero!, a1 anda2 must
both approachae , while c1 , c2 , and ṡ should approach
each other such that the wave consumption process s
This immediately yields a resonance condition for the eq
librium wave number and the equilibrium speed of the jum

lim
t→`

ṡ5c~ae ,x50!5C~ae!5S ]q

]x D
x50

~ae!, ~43!

viz. the wave speed should equal the differential flow re
tive to a change inx. For the current system,~]q/]x!x50
vanishes exactly from Eq.~8!, and one concludes that th
final defect speed vanishes. From the speed expression~5a!,

ae5
2
3 . ~44!

That the speed of the jump singularity approaches zer
clear from the world lines of Fig. 2, and, in Fig. 10, w
depict the change in the number of world lines in the GK
simulation of Fig. 2 as a function of time and show an a
proach toae5

2
3. We have also verified the validity of Eq

~40! by inserting the values ofa250.94, a150.94,
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x150.03, andx250.005 estimated from the complexifica
tion scheme at the instant of singularity formation attf51.5.
As is evident in Fig. 10, it accurately estimates the initi
wave consumption rate as the singularity relaxes.

V. SUMMARY

Unlike near-critical CGL systems, which have a narro
unstable band and which do not respect mass conservat
we have shown here that wave-number selection for
gradient-flow system is a unique mechanism, and that th
is a specific preferred wave numberae defined by Eq.~44!.
This is because thex Galilean zero mode of these system
can couple with nonlinear dispersion to leading order to tri
ger the formation of a jump defect that annihilates waves
it decays. The defect can only relax to zero amplitude wh

FIG. 10. The average wave number within the domain of sim
lation of the GKS equation in Fig. 1. The predicted initial wav
node consumption rate at the beginning of the relaxation proc
from Eq. ~40! is shown. The parametersa250.94, a150.94,
x250.03, andx150.005 are obtained from a simulation of the
formation process with the slow-evolution equations. Relaxation
an equilibrium wave number is also evident. The slight deviation
the equilibrium number from2

3 is due to the annihilation of one
additional peak. This is quite remarkable, considering the sm
number of peaks between defects and the irregular spacing at
end of evolution.
ce
l

on,
a
re

-
s
n

the surrounding wave number has been dilated toae . Mass
conservation, however, is a generic physical property t
must be obeyed by many systems described by the C
equation. It has, however, been removed in the latter’s d
vation @17,44#. This is an omission that can obscure the tr
wave-number selection mechanism, since the curr
coupled mechanism is far more dominant as it enters in
leading order of the modulation stretching in Eq.~7!. Nor is
it sufficient to introduce the zero mode as a slave mode to
phase dynamics of the CGL equation, as is often done for
Goldstone drift mode. We are currently extending the CG
formulation to include the zero-mode dynamics.

We also note that the current theory pertains to the se
tion of a periodic state, but that the asymptotic state at
end of the modulation instability may not be even loca
periodic, as seen in the simulation of GKS equation in Fig
In fact, the pulselike structures at this stage often have
regular and discontinuous separation and amplitude as
sidual effects of the noise-induced, defect-driven dynam
The final pulse created by coalescence at the jump befo
relaxes completely, for example, is typically much larg
than the others, as seen in Fig. 1. These localized struct
interact individually instead of through a collective modul
tion instability. The resulting dynamics cannot then be a
lyzed by assuming local periodicity, and the slow
modulation description throughg1 periodic waves become
inappropriate. In earlier papers@49,50#, we showed that, for
some systems, the current periodic state selection pro
can be followed by another one involving individual pul
coalescence, such that the number of pulses can decr
further. Such coalescence can also be derived by a cou
amplitude-phase equation, but the amplitude now co
sponds to the amplitude of a single pulse and its phase s
ration from the neighboring pulses. The subsequent dyn
ics then takes on a distinctly localized feature involvi
individual pulses. The coarsening process hence may c
tinue beyond the modulation instability, and the final avera
pulse spacing can be much longer than 2p/ae , the ‘‘peri-
odic’’ state selected by the modulation instability.
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